This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2023 Stanford Mathematics Tournament, 8

If $x$ and $y$ are real numbers, compute the minimum possible value of \[\frac{4xy(3x^2+10xy+6y^2)}{x^4+4y^4}.\]

2022 LMT Spring, 3

Tags: algebra
Let the four real solutions to the equation $x^2 + \frac{144}{x^2} = 25$ be $r_1, r_2, r_3$, and $r_4$. Find $|r_1| +|r_2| +|r_3| +|r_4|$.

1978 IMO Longlists, 3

Find all numbers $\alpha$ for which the equation \[x^2 - 2x[x] + x -\alpha = 0\] has two nonnegative roots. ($[x]$ denotes the largest integer less than or equal to x.)

1999 National Olympiad First Round, 12

\[ \begin{array}{c} {x^{2} \plus{} y^{2} \plus{} z^{2} \equal{} 21} \\ {x \plus{} y \plus{} z \plus{} xyz \equal{} \minus{} 3} \\ {x^{2} yz \plus{} y^{2} xz \plus{} z^{2} xy \equal{} \minus{} 40} \end{array} \] The number of real triples $ \left(x,y,z\right)$ satisfying above system is $\textbf{(A)}\ 0 \qquad\textbf{(B)}\ 3 \qquad\textbf{(C)}\ 6 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ \text{None}$

2016 BMT Spring, 1

Tags: algebra
Define an such that $a_1 =\sqrt3$ and for all integers $i$, $a_{i+1} = a^2_i - 2$. What is $a_{2016}$?

2016 Estonia Team Selection Test, 6

A circle is divided into arcs of equal size by $n$ points ($n \ge 1$). For any positive integer $x$, let $P_n(x)$ denote the number of possibilities for colouring all those points, using colours from $x$ given colours, so that any rotation of the colouring by $ i \cdot \frac{360^o}{n}$ , where i is a positive integer less than $n$, gives a colouring that differs from the original in at least one point. Prove that the function $P_n(x)$ is a polynomial with respect to $x$.

2017 Romania National Olympiad, 2

Let be a natural number $ n $ and $ 2n $ real numbers $ b_1,b_2,\ldots ,b_n,a_1<a_2<\cdots <a_n. $ Show that [b]a)[/b] if $ b_1,b_2,\ldots ,b_n>0, $ then there exists a polynomial $ f\in\mathbb{R}[X] $ irreducible in $ \mathbb{R}[X] $ such that $$ f\left( a_i \right) =b_i,\quad\forall i\in\{ 1,2,\ldots ,n \} . $$ [b]b)[/b] there exists a polynom $ g\in\mathbb{R} [X] $ of degree at least $ 1 $ which has only real roots and such that $$ g\left( a_i \right) =b_i,\quad\forall i\in\{ 1,2,\ldots ,n \} . $$

2007 Putnam, 2

Suppose that $ f: [0,1]\to\mathbb{R}$ has a continuous derivative and that $ \int_0^1f(x)\,dx\equal{}0.$ Prove that for every $ \alpha\in(0,1),$ \[ \left|\int_0^{\alpha}f(x)\,dx\right|\le\frac18\max_{0\le x\le 1}|f'(x)|\]

2005 iTest, 23

Tags: radical , algebra
$\sqrt[3]{x+\sqrt[3]{x+\sqrt[3]{x+ \sqrt[3]{x ...}}}}= 8$. Find $x$.

2016 India Regional Mathematical Olympiad, 2

Let $a,b,c$ be positive real numbers such that $$\frac{a}{1+a}+\frac{b}{1+b}+\frac{c}{1+c}=1.$$ Prove that $abc \le \frac{1}{8}$.

2007 Germany Team Selection Test, 1

Tags: algebra
For a multiple of $ kb$ of $ b$ let $ a \% kb$ be the greatest number such that $ a \% kb \equal{} a \bmod b$ which is smaller than $ kb$ and not greater than $ a$ itself. Let $ n \in \mathbb{Z}^ \plus{} .$ Determine all integer pairs $ (a,b)$ with: \[ a\%b \plus{} a\%2b \plus{} a\%3b \plus{} \ldots \plus{} a\%nb \equal{} a \plus{} b \]

2006 MOP Homework, 3

Prove for every irrational real number a, there are irrational numbers b and b' such that a+b and ab' are rational while a+b' and ab are irrational.

ABMC Accuracy Rounds, 2019

[b]p1.[/b] Compute $45\times 45 - 6$. [b]p2.[/b] Consecutive integers have nice properties. For example, $3$, $4$, $5$ are three consecutive integers, and $8$, $9$, $10$ are three consecutive integers also. If the sum of three consecutive integers is $24$, what is the smallest of the three numbers? [b]p3.[/b] How many positive integers less than $25$ are either multiples of $2$ or multiples of $3$? [b]p4.[/b] Charlotte has $5$ positive integers. Charlotte tells you that the mean, median, and unique mode of his five numbers are all equal to $10$. What is the largest possible value of the one of Charlotte's numbers? [b]p5.[/b] Mr. Meeseeks starts with a single coin. Every day, Mr. Meeseeks goes to a magical coin converter where he can either exchange $1$ coin for $5$ coins or exchange $5$ coins for $3$ coins. What is the least number of days Mr. Meeseeks needs to end with $15$ coins? [b]p6.[/b] Twelve years ago, Violet's age was twice her sister Holo's age. In $7$ years, Holo's age will be $13$ more than a third of Violet's age. $3$ years ago, Violet and Holo's cousin Rindo's age was the sum of their ages. How old is Rindo? [b]p7.[/b] In a $2 \times 3$ rectangle composed of $6$ unit squares, let $S$ be the set of all points $P$ in the rectangle such that a unit circle centered at $P$ covers some point in exactly $3$ of the unit squares. Find the area of the region $S$. For example, the diagram below shows a valid unit circle in a $2 \times 3$ rectangle. [img]https://cdn.artofproblemsolving.com/attachments/d/9/b6e00306886249898c2bdb13f5206ced37d345.png[/img] [b]p8.[/b] What are the last four digits of $2^{1000}$? [b]p9.[/b] There is a point $X$ in the center of a $2 \times 2 \times 2$ box. Find the volume of the region of points that are closer to $X$ than to any of the vertices of the box. [b]p10.[/b] Evaluate $\sqrt{37 \cdot 41 \cdot 113 \cdot 290 - 4319^2}$ [b]p11.[/b] (Estimation) A number is abundant if the sum of all its divisors is greater than twice the number. One such number is $12$, because $1+2+3+4+6+12 = 28 > 24$: How many abundant positive integers less than $20190$ are there? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2009 CHKMO, 1

Let $ f(x) \equal{} c_m x^m \plus{} c_{m\minus{}1} x^{m\minus{}1} \plus{}...\plus{} c_1 x \plus{} c_0$, where each $ c_i$ is a non-zero integer. Define a sequence $ \{ a_n \}$ by $ a_1 \equal{} 0$ and $ a_{n\plus{}1} \equal{} f(a_n)$ for all positive integers $ n$. (a) Let $ i$ and $ j$ be positive integers with $ i<j$. Show that $ a_{j\plus{}1} \minus{} a_j$ is a multiple of $ a_{i\plus{}1} \minus{} a_i$. (b) Show that $ a_{2008} \neq 0$

Russian TST 2018, P3

Tags: function , algebra
A function $f:\mathbb{R} \to \mathbb{R}$ has the following property: $$\text{For every } x,y \in \mathbb{R} \text{ such that }(f(x)+y)(f(y)+x) > 0, \text{ we have } f(x)+y = f(y)+x.$$ Prove that $f(x)+y \leq f(y)+x$ whenever $x>y$.

1993 Baltic Way, 15

On each face of two dice some positive integer is written. The two dice are thrown and the numbers on the top face are added. Determine whether one can select the integers on the faces so that the possible sums are $2,3,4,5,6,7,8,9,10,11,12,13$, all equally likely?

1989 IberoAmerican, 2

Tags: function , algebra
Let the function $f$ be defined on the set $\mathbb{N}$ such that $\text{(i)}\ \ \quad f(1)=1$ $\text{(ii)}\ \quad f(2n+1)=f(2n)+1$ $\text{(iii)}\quad f(2n)=3f(n)$ Determine the set of values taken $f$.

2019 OMMock - Mexico National Olympiad Mock Exam, 3

Let $\mathbb{Z}$ be the set of integers. Find all functions $f: \mathbb{Z}\rightarrow \mathbb{Z}$ such that, for any two integers $m, n$, $$f(m^2)+f(mf(n))=f(m+n)f(m).$$ [i]Proposed by Victor Domínguez and Pablo Valeriano[/i]

1989 IMO Shortlist, 26

Let $ n \in \mathbb{Z}^\plus{}$ and let $ a, b \in \mathbb{R}.$ Determine the range of $ x_0$ for which \[ \sum^n_{i\equal{}0} x_i \equal{} a \text{ and } \sum^n_{i\equal{}0} x^2_i \equal{} b,\] where $ x_0, x_1, \ldots , x_n$ are real variables.

2023 UMD Math Competition Part I, #6

Tags: algebra
Let $$ A = \log (1) + \log 2 + \log(3) + \cdots + \log(2023) $$ and $$ B = \log(1/1) + \log(1/2) + \log(1/3) + \cdots + \log(1/2023). $$ What is the value of $A + B\ ?$ $($logs are logs base $10)$ $$ \mathrm a. ~ 0\qquad \mathrm b.~1\qquad \mathrm c. ~{-\log(2023!)} \qquad \mathrm d. ~\log(2023!) \qquad \mathrm e. ~{-2023} $$

2005 Baltic Way, 1

Let $a_0$ be a positive integer. Define the sequence $\{a_n\}_{n \geq 0}$ as follows: if \[ a_n = \sum_{i = 0}^jc_i10^i \] where $c_i \in \{0,1,2,\cdots,9\}$, then \[ a_{n + 1} = c_0^{2005} + c_1^{2005} + \cdots + c_j^{2005}. \] Is it possible to choose $a_0$ such that all terms in the sequence are distinct?

2020 USA EGMO Team Selection Test, 6

Find the largest integer $N \in \{1, 2, \ldots , 2019 \}$ such that there exists a polynomial $P(x)$ with integer coefficients satisfying the following property: for each positive integer $k$, $P^k(0)$ is divisible by $2020$ if and only if $k$ is divisible by $N$. Here $P^k$ means $P$ applied $k$ times, so $P^1(0)=P(0), P^2(0)=P(P(0)),$ etc.

2014 Saudi Arabia IMO TST, 3

Show that it is possible to write a $n \times n$ array of non-negative numbers (not necessarily distinct) such that the sums of entries on each row and each column are pairwise distinct perfect squares.

2023 UMD Math Competition Part I, #18

Tags: algebra
How many ordered triples of integers $(a, b, c)$ satisfy the following system? $$ \begin{cases} ab + c &= 17 \\ a + bc &= 19 \end{cases} $$ $$ \mathrm a. ~ 2\qquad \mathrm b.~3\qquad \mathrm c. ~4 \qquad \mathrm d. ~5 \qquad \mathrm e. ~6 $$

2001 Estonia National Olympiad, 4

If $x$ and $y$ are nonnegative real numbers with $x+y= 2$, show that $x^2y^2(x^2+y^2)\le 2$.