This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1970 Czech and Slovak Olympiad III A, 6

Determine all real $x$ such that \[\sqrt{\tan(x)-1}\,\Bigl(\log_{\tan(x)}\bigl(2+4\cos^2(x)-2\bigr)\Bigr)\ge0.\]

1996 Singapore Team Selection Test, 3

Let $S$ be a sequence $n_1, n_2,..., n_{1995}$ of positive integers such that $n_1 +...+ n_{1995 }=m < 3990$. Prove that for each integer $q$ with $1 \le q \le m$, there is a sequence $n_{i_1} , n_{i_2} , ... , n_{i_k}$ , where $1 \le i_1 < i_2 < ...< i_k \le 1995$, $n_{i_1} + ...+ n_{i_k} = q$ and $k$ depends on $q$.

1993 Brazil National Olympiad, 5

Find at least one function $f: \mathbb R \rightarrow \mathbb R$ such that $f(0)=0$ and $f(2x+1) = 3f(x) + 5$ for any real $x$.

2016 Junior Balkan Team Selection Tests - Moldova, 5

Real numbers $a$ and $b$ satisfy the system of equations $$\begin{cases} a^3-a^2+a-5=0 \\ b^3-2b^2+2b+4=0 \end{cases}$$ Find the numerical value of the sum $a+ b$.

2016 Turkmenistan Regional Math Olympiad, Problem 5

Tags: algebra
Let $f:(0;\infty) -- (0;\infty)$ such that $f(x^y)=(f(x))^{f(y)}$. Prove $f(xy)=f(x)f(y)$ and $f(x+y)=f(x)+f(y)$ for all positive real $x,y$.

2009 Germany Team Selection Test, 1

Consider cubes of edge length 5 composed of 125 cubes of edge length 1 where each of the 125 cubes is either coloured black or white. A cube of edge length 5 is called "big", a cube od edge length is called "small". A posititve integer $ n$ is called "representable" if there is a big cube with exactly $ n$ small cubes where each row of five small cubes has an even number of black cubes whose centres lie on a line with distances $ 1,2,3,4$ (zero counts as even number). (a) What is the smallest and biggest representable number? (b) Construct 45 representable numbers.

2012 IFYM, Sozopol, 6

Tags: function , algebra
Determine all functions $f:\Bbb{R}\to\Bbb{R}$ such that \[ f(x^2 + f(y)) = (f(x) + y^2)^ 2 \] , for all $x,y\in \Bbb{R}.$

EMCC Accuracy Rounds, 2010

[b]p1.[/b] Calculate $\left( \frac12 + \frac13 + \frac14 \right)^2$. [b]p2.[/b] Find the $2010^{th}$ digit after the decimal point in the expansion of $\frac17$. [b]p3.[/b] If you add $1$ liter of water to a solution consisting of acid and water, the new solutions will contain of $30\%$ water. If you add another $5$ liters of water to the new solution, it will contain $36\frac{4}{11}\%$ water. Find the number of liters of acid in the original solution. [b]p4.[/b] John places $5$ indistinguishable blue marbles and $5$ indistinguishable red marbles into two distinguishable buckets such that each bucket has at least one blue marble and one red marble. How many distinguishable marble distributions are possible after the process is completed? [b]p5.[/b] In quadrilateral $PEAR$, $PE = 21$, $EA = 20$, $AR = 15$, $RE = 25$, and $AP = 29$. Find the area of the quadrilateral. [b]p6.[/b] Four congruent semicircles are drawn within the boundary of a square with side length $1$. The center of each semicircle is the midpoint of a side of the square. Each semicircle is tangent to two other semicircles. Region $R$ consists of points lying inside the square but outside of the semicircles. The area of $R$ can be written in the form $a - b\pi$, where $a$ and $b$ are positive rational numbers. Compute $a + b$. [b]p7.[/b] Let $x$ and $y$ be two numbers satisfying the relations $x\ge 0$, $y\ge 0$, and $3x + 5y = 7$. What is the maximum possible value of $9x^2 + 25y^2$? [b]p8.[/b] In the Senate office in Exie-land, there are $6$ distinguishable senators and $6$ distinguishable interns. Some senators and an equal number of interns will attend a convention. If at least one senator must attend, how many combinations of senators and interns can attend the convention? [b]p9.[/b] Evaluate $(1^2 - 3^2 + 5^2 - 7^2 + 9^2 - ... + 2009^2) -(2^2 - 4^2 + 6^2 - 8^2 + 10^2- ... + 2010^2)$. [b]p10.[/b] Segment $EA$ has length $1$. Region $R$ consists of points $P$ in the plane such that $\angle PEA \ge 120^o$ and $PE <\sqrt3$. If point $X$ is picked randomly from the region$ R$, the probability that $AX <\sqrt3$ can be written in the form $a - \frac{\sqrt{b}}{c\pi}$ , where $a$ is a rational number, $b$ and $c$ are positive integers, and $b$ is not divisible by the square of a prime. Find the ordered triple $(a, b, c)$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 Spain Mathematical Olympiad, Problem 3

Represent for $\mathbb {Z}$ the set of all integers. Find all of the functions ${f:}$ $ \mathbb{Z} \rightarrow \mathbb{Z}$ such that for any ${x,y}$ integers, they satisfy: ${f(x + f(y)) = f(x) - y.}$

DMM Individual Rounds, 2008

[b]p1.[/b] Joe owns stock. On Monday morning on October $20$th, $2008$, his stocks were worth $\$250,000$. The value of his stocks, for each day from Monday to Friday of that week, increased by $10\%$, increased by $5\%$, decreased by $5\%$, decreased by $15\%$, and decreased by $20\%$, though not necessarily in that order. Given this information, let $A$ be the largest possible value of his stocks on that Friday evening, and let $B$ be the smallest possible value of his stocks on that Friday evening. What is $A - B$? [b]p2.[/b] What is the smallest positive integer $k$ such that $2k$ is a perfect square and $3k$ is a perfect cube? [b]p3.[/b] Two competitive ducks decide to have a race in the first quadrant of the $xy$ plane. They both start at the origin, and the race ends when one of the ducks reaches the line $y = \frac12$ . The first duck follows the graph of $y = \frac{x}{3}$ and the second duck follows the graph of $y = \frac{x}{5}$ . If the two ducks move in such a way that their $x$-coordinates are the same at any time during the race, find the ratio of the speed of the first duck to that of the second duck when the race ends. [b]p4.[/b] There were grammatical errors in this problem as stated during the contest. The problem should have said: You play a carnival game as follows: The carnival worker has a circular mat of radius 20 cm, and on top of that is a square mat of side length $10$ cm, placed so that the centers of the two mats coincide. The carnival worker also has three disks, one each of radius $1$ cm, $2$ cm, and $3$ cm. You start by paying the worker a modest fee of one dollar, then choosing two of the disks, then throwing the two disks onto the mats, one at a time, so that the center of each disk lies on the circular mat. You win a cash prize if the center of the large disk is on the square AND the large disk touches the small disk, otherwise you just lost the game and you get no money. How much is the cash prize if choosing the two disks randomly and then throwing the disks randomly (i.e. with uniform distribution) will, on average, result in you breaking even? [b]p5.[/b] Four boys and four girls arrive at the Highball High School Senior Ball without a date. The principal, seeking to rectify the situation, asks each of the boys to rank the four girls in decreasing order of preference as a prom date and asks each girl to do the same for the four boys. None of the boys know any of the girls and vice-versa (otherwise they would have probably found each other before the prom), so all eight teenagers write their rankings randomly. Because the principal lacks the mathematical chops to pair the teenagers together according to their stated preference, he promptly ignores all eight of the lists and randomly pairs each of the boys with a girl. What is the probability that no boy ends up with his third or his fourth choice, and no girl ends up with her third or fourth choice? [b]p6.[/b] In the diagram below, $ABCDEFGH$ is a rectangular prism, $\angle BAF = 30^o$ and $\angle DAH = 60^o$. What is the cosine of $\angle CEG$? [img]https://cdn.artofproblemsolving.com/attachments/a/1/1af1a7d5d523884703b9ff95aaf301bcc18140.png[/img] [b]p7.[/b] Two cows play a game where each has one playing piece, they begin by having the two pieces on opposite vertices of an octahedron, and the two cows take turns moving their piece to an adjacent vertex. The winner is the first player who moves its piece to the vertex occupied by its opponent’s piece. Because cows are not the most intelligent of creatures, they move their pieces randomly. What is the probability that the first cow to move eventually wins? [b]p8.[/b] Find the last two digits of $$\sum^{2008}_{k=1}k {2008 \choose k}.$$ PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2001 Greece JBMO TST, 1

a) Factorize $A= x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2$ b) Prove that there are no integers $x,y,z$ such that $x^4+y^4+z^4-2x^2y^2-2y^2z^2-2z^2x^2=2000 $

2010 Contests, 1

Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all $x, y\in\mathbb{R}$, we have \[f(x+y)+f(x)f(y)=f(xy)+(y+1)f(x)+(x+1)f(y).\]

2014 ELMO Shortlist, 5

Tags: function , algebra
Let $\mathbb R^\ast$ denote the set of nonzero reals. Find all functions $f: \mathbb R^\ast \to \mathbb R^\ast$ satisfying \[ f(x^2+y)+1=f(x^2+1)+\frac{f(xy)}{f(x)} \] for all $x,y \in \mathbb R^\ast$ with $x^2+y\neq 0$. [i]Proposed by Ryan Alweiss[/i]

2021 Junior Balkan Team Selection Tests - Romania, P1

Let $n\geq 2$ be a positive integer and let $a_1,a_2,...,a_n\in[0,1]$ be real numbers. Find the maximum value of the smallest of the numbers: \[a_1-a_1a_2, \ a_2-a_2a_3,...,a_n-a_na_1.\]

1998 Belarus Team Selection Test, 2

Let $a$, $b$, $c$ be real positive numbers. Show that \[\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\geq \frac{a+b}{b+c}+\frac{b+c}{a+b}+1\]

2008 ITest, 8

The math team at Jupiter Falls Middle School meets twice a month during the Summer, and the math team coach, Mr. Fischer, prepares some Olympics-themed problems for his students. One of the problems Joshua and Alexis work on boils down to a system of equations: \begin{align*}2x+3y+3z&=8,\\3x+2y+3z&=808,\\3x+3y+2z&=80808.\end{align*} Their goal is not to find a solution $(x,y,z)$ to the system, but instead to compute the sum of the variables. Find the value of $x+y+z$.

2015 NIMO Problems, 2

There exists a unique strictly increasing arithmetic sequence $\{a_i\}_{i=1}^{100}$ of positive integers such that \[a_1+a_4+a_9+\cdots+a_{100}=\text{1000},\] where the summation runs over all terms of the form $a_{i^2}$ for $1\leq i\leq 10$. Find $a_{50}$. [i]Proposed by David Altizio and Tony Kim[/i]

1996 IMO Shortlist, 3

Let $ a > 2$ be given, and starting $ a_0 \equal{} 1, a_1 \equal{} a$ define recursively: \[ a_{n\plus{}1} \equal{} \left(\frac{a^2_n}{a^2_{n\minus{}1}} \minus{} 2 \right) \cdot a_n.\] Show that for all integers $ k > 0,$ we have: $ \sum^k_{i \equal{} 0} \frac{1}{a_i} < \frac12 \cdot (2 \plus{} a \minus{} \sqrt{a^2\minus{}4}).$

Kvant 2025, M2832

There are $2024$ points of general position marked on the coordinate plane (i.e., points among which there are no three lying on the same straight line). Is there a polynomial of two variables $f(x,y)$ a) of degree $2025$; b) of degree $2024$ such that it equals to zero exactly at these marked points? [i]Proposed by Navid Safaei[/i]

2011 Abels Math Contest (Norwegian MO), 3a

The positive numbers $a_1, a_2,...$ satisfy $a_1 = 1$ and $(m+n)a_{m+n }\le a_m +a_n$ for all positive integers $m$ and $n$. Show that $\frac{1}{a_{200}} > 4 \cdot 10^7$ . .

2023 Brazil Undergrad MO, 5

A drunken horse moves on an infinite board whose squares are numbered in pairs $(a, b) \in \mathbb{Z}^2$. In each movement, the 8 possibilities $$(a, b) \rightarrow (a \pm 1, b \pm 2),$$ $$(a, b) \rightarrow (a \pm 2, b \pm 1)$$ are equally likely. Knowing that the knight starts at $(0, 0)$, calculate the probability that, after $2023$ moves, it is in a square $(a, b)$ with $a \equiv 4 \pmod 8$ and $b \equiv 5 \pmod 8$.

2007 JBMO Shortlist, 2

$\boxed{\text{A2}}$ Prove that for all Positive reals $a,b,c$ $\frac{a^2-bc}{2a^2+bc}+\frac{b^2-ca}{2b^2+ca}+\frac{c^2-ab}{2c^2+ab}\leq 0$

2023 SG Originals, Q2

Let $a, b, c, d$ be positive reals with $a - c = b - d > 0$. Show that $$\frac{ab}{cd} \ge \left(\frac{\sqrt{a} +\sqrt{b}}{\sqrt{c}+\sqrt{d}}\right)^4$$

Math Hour Olympiad, Grades 5-7, 2013.67

[u]Round 1[/u] [b]p1.[/b] Goldilocks enters the home of the three bears – Papa Bear, Mama Bear, and Baby Bear. Each bear is wearing a different-colored shirt – red, green, or blue. All the bears look the same to Goldilocks, so she cannot otherwise tell them apart. The bears in the red and blue shirts each make one true statement and one false statement. The bear in the red shirt says: “I'm Blue's dad. I'm Green's daughter.” The bear in the blue shirt says: “Red and Green are of opposite gender. Red and Green are my parents.” Help Goldilocks find out which bear is wearing which shirt. [b]p2.[/b] The University of Washington is holding a talent competition. The competition has five contests: math, physics, chemistry, biology, and ballroom dancing. Any student can enter into any number of the contests but only once for each one. For example, a student may participate in math, biology, and ballroom. It turned out that each student participated in an odd number of contests. Also, each contest had an odd number of participants. Was the total number of contestants odd or even? [b]p3.[/b] The $99$ greatest scientists of Mars and Venus are seated evenly around a circular table. If any scientist sees two colleagues from her own planet sitting an equal number of seats to her left and right, she waves to them. For example, if you are from Mars and the scientists sitting two seats to your left and right are also from Mars, you will wave to them. Prove that at least one of the $99$ scientists will be waving, no matter how they are seated around the table. [b]p4.[/b] One hundred boys participated in a tennis tournament in which every player played each other player exactly once and there were no ties. Prove that after the tournament, it is possible for the boys to line up for pizza so that each boy defeated the boy standing right behind him in line. [b]p5.[/b] To celebrate space exploration, the Science Fiction Museum is going to read Star Wars and Star Trek stories for $24$ hours straight. A different story will be read each hour for a total of $12$ Star Wars stories and $12$ Star Trek stories. George and Gene want to listen to exactly $6$ Star Wars and $6$ Star Trek stories. Show that no matter how the readings are scheduled, the friends can find a block of $12$ consecutive hours to listen to the stories together. [u]Round 2[/u] [b]p6.[/b] $2013$ people attended Cinderella's ball. Some of the guests were friends with each other. At midnight, the guests started turning into mice. After the first minute, everyone who had no friends at the ball turned into a mouse. After the second minute, everyone who had exactly one friend among the remaining people turned into a mouse. After the third minute, everyone who had two human friends left in the room turned into a mouse, and so on. What is the maximal number of people that could have been left at the ball after $2013$ minutes? [b]p7.[/b] Bill and Charlie are playing a game on an infinite strip of graph paper. On Bill’s turn, he marks two empty squares of his choice (not necessarily adjacent) with crosses. Charlie, on his turn, can erase any number of crosses, as long as they are all adjacent to each other. Bill wants to create a line of $2013$ crosses in a row. Can Charlie stop him? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1986 China Team Selection Test, 3

Given a positive integer $A$ written in decimal expansion: $(a_{n},a_{n-1}, \ldots, a_{0})$ and let $f(A)$ denote $\sum^{n}_{k=0} 2^{n-k}\cdot a_k$. Define $A_1=f(A), A_2=f(A_1)$. Prove that: [b]I.[/b] There exists positive integer $k$ for which $A_{k+1}=A_k$. [b]II.[/b] Find such $A_k$ for $19^{86}.$