This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1972 Canada National Olympiad, 10

What is the maximum number of terms in a geometric progression with common ratio greater than 1 whose entries all come from the set of integers between 100 and 1000 inclusive?

2013 Romania Team Selection Test, 1

Suppose that $a$ and $b$ are two distinct positive real numbers such that $\lfloor na\rfloor$ divides $\lfloor nb\rfloor$ for any positive integer $n$. Prove that $a$ and $b$ are positive integers.

2021 JHMT HS, 2

Compute the smallest positive integer $n$ such that $\int_{0}^{n} \lfloor x\rfloor\,dx$ is at least $2021.$

2004 Harvard-MIT Mathematics Tournament, 8

Tags: algebra
A freight train leaves the town of Jenkinsville at $1:00$ PM traveling due east at constant speed. Jim, a hobo, sneaks onto the train and falls asleep. At the same time, Julie leaves Jenkinsville on her bicycle, traveling along a straight road in a northeasterly direction (but not due northeast) at $10$ miles per hour. At $1:12$ PM, Jim rolls over in his sleep and falls from the train onto the side of the tracks. He wakes up and immediately begins walking at $3:5$ miles per hour directly towards the road on which Julie is riding. Jim reaches the road at $2:12$ PM, just as Julie is riding by. What is the speed of the train in miles per hour?

2020 Saint Petersburg Mathematical Olympiad, 1.

Tags: algebra
What is the maximal number of solutions can the equation have $$\max \{a_1x+b_1, a_2x+b_2, \ldots, a_{10}x+b_{10}\}=0$$ where $a_1,b_1, a_2, b_2, \ldots , a_{10},b_{10}$ are real numbers, all $a_i$ not equal to $0$.

2005 Taiwan TST Round 3, 1

Let ${a_1,a_2,\dots,a_n}$ be positive real numbers, ${n>1}$. Denote by $g_n$ their geometric mean, and by $A_1,A_2,\dots,A_n$ the sequence of arithmetic means defined by \[ A_k=\frac{a_1+a_2+\cdots+a_k}{k},\qquad k=1,2,\dots,n. \] Let $G_n$ be the geometric mean of $A_1,A_2,\dots,A_n$. Prove the inequality \[ n \root n\of{\frac{G_n}{A_n}}+ \frac{g_n}{G_n}\le n+1 \] and establish the cases of equality. [i]Proposed by Finbarr Holland, Ireland[/i]

2014 BMO TST, 2

Tags: algebra
Solve the following equation in $\mathbb{R}$: $$\left(x-\frac{1}{x}\right)^\frac{1}{2}+\left(1-\frac{1}{x}\right)^\frac{1}{2}=x.$$

ABMC Online Contests, 2023 Dec

[b]p1.[/b] Eric is playing Brawl Stars. If he starts playing at $11:10$ AM, and plays for $2$ hours total, then how many minutes past noon does he stop playing? [b]p2.[/b] James is making a mosaic. He takes an equilateral triangle and connects the midpoints of its sides. He then takes the center triangle formed by the midsegments and connects the midpoints of its sides. In total, how many equilateral triangles are in James’ mosaic? [b]p3.[/b] What is the greatest amount of intersections that $3$ circles and $3$ lines can have, given that they all lie on the same plane? [b]p4.[/b] In the faraway land of Arkesia, there are two types of currencies: Silvers and Gold. Each Silver is worth $7$ dollars while each Gold is worth $17$ dollars. In Daniel’s wallet, the total dollar value of the Silvers is $1$ more than that of the Golds. What is the smallest total dollar value of all of the Silvers and Golds in his wallet? [b]p5.[/b] A bishop is placed on a random square of a $8$-by-$8$ chessboard. On average, the bishop is able to move to $s$ other squares on the chessboard. Find $4s$. Note: A bishop is a chess piece that can move diagonally in any direction, as far as it wants. [b]p6.[/b] Andrew has a certain amount of coins. If he distributes them equally across his $9$ friends, he will have $7$ coins left. If he apportions his coins for each of his $15$ classmates, he will have $13$ coins to spare. If he splits the coins into $4$ boxes for safekeeping, he will have $2$ coins left over. What is the minimum number of coins Andrew could have? [b]p7.[/b] A regular polygon $P$ has three times as many sides as another regular polygon $Q$. The interior angle of $P$ is $16^o$ greater than the interior angle of $Q$. Compute how many more diagonals $P$ has compared to $Q$. [b]p8.[/b] In an certain airport, there are three ways to switch between the ground floor and second floor that are 30 meters apart: either stand on an escalator, run on an escalator, or climb the stairs. A family on vacation takes 65 seconds to climb up the stairs. A solo traveller late for their flight takes $25$ seconds to run upwards on the escalator. The amount of time (in seconds) it takes for someone to switch floors by standing on the escalator can be expressed as $\frac{u}{v}$ , where $u$ and $v$ are relatively prime. Find $u + v$. (Assume everyone has the same running speed, and the speed of running on an escalator is the sum of the speeds of riding the escalator and running on the stairs.) [b]p9.[/b] Avanish, being the studious child he is, is taking practice tests to improve his score. Avanish has a $60\%$ chance of passing a practice test. However, whenever Avanish passes a test, he becomes more confident and instead has a $70\%$ chance of passing his next immediate test. If Avanish takes $3$ practice tests in a row, the expected number of practice tests Avanish will pass can be expressed as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime. Find $a + b$. [b]p10.[/b] Triangle $\vartriangle ABC$ has sides $AB = 51$, $BC = 119$, and $AC = 136$. Point $C$ is reflected over line $\overline{AB}$ to create point $C'$. Next, point $B$ is reflected over line $\overline{AC'}$ to create point $B'$. If $[B'C'C]$ can be expressed in the form of $a\sqrt{b}$, where $b$ is not divisible by any perfect square besides $1$, find $a + b$. [b]p11[/b]. Define the following infinite sequence $s$: $$s = \left\{\frac{1}{1},\frac{1}{1 + 3},\frac{1}{1 + 3 + 6}, ... ,\frac{1}{1 + 3 + 6 + ...+ t_k},...\right\},$$ where $t_k$ denotes the $k$th triangular number. The sum of the first $2024$ terms of $s$, denoted $S$, can be expressed as $$S = 3 \left(\frac{1}{2}+\frac{1}{a}-\frac{1}{b}\right),$$ where $a$ and $b$ are positive integers. Find the minimal possible value of $a + b$. [b]p12.[/b] Omar writes the numbers from $1$ to $1296$ on a whiteboard and then converts each of them into base $6$. Find the sum of all of the digits written on the whiteboard (in base $10$), including both the base $10$ and base $6$ numbers. [b]p13.[/b] A mountain number is a number in a list that is greater than the number to its left and right. Let $N$ be the amount of lists created from the integers $1$ - $100$ such that each list only has one mountain number. $N$ can be expressed as $$N = 2^a(2^b - c^2),$$ where $a$, $b$ and $c$ are positive integers and $c$ is not divisible by $2$. Find $a + b+c$. (The numbers at the beginning or end of a list are not considered mountain numbers.)[hide]Original problem was voided because the original format of the answer didn't match the result's format. So I changed it in the wording, in order the problem to be correct[/hide] [b]p14.[/b] A circle $\omega$ with center $O$ has a radius of $25$. Chords $\overline{AB}$ and $\overline{CD}$ are drawn in $\omega$ , intersecting at $X$ such that $\angle BXC = 60^o$ and $AX > BX$. Given that the shortest distance of $O$ with $\overline{AB}$ and $\overline{CD}$ is $7$ and $15$ respectively, the length of $BX$ can be expressed as $x - \frac{y}{\sqrt{z}}$ , where $x$, $y$, and $z$ are positive integers such that $z$ is not divisible by any perfect square. Find $x + y + z.$ [hide]two answers were considered correct according to configuration[/hide] [b]p15.[/b] How many ways are there to split the first $10$ natural numbers into $n$ sets (with $n \ge 1$) such that all the numbers are used and each set has the same average? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2004 Putnam, B1

Let $P(x)=c_nx^n+c_{n-1}x^{n-1}+\cdots+c_0$ be a polynomial with integer coefficients. Suppose that $r$ is a rational number such that $P(r)=0$. Show that the $n$ numbers $c_nr, c_nr^2+c_{n-1}r, c_nr^3+c_{n-1}r^2+c_{n-1}r, \dots, c_nr^n+c_{n-1}r^{n-1}+\cdots+c_1r$ are all integers.

2014 Contests, 4

Let $n$ and $b$ be positive integers. We say $n$ is $b$-discerning if there exists a set consisting of $n$ different positive integers less than $b$ that has no two different subsets $U$ and $V$ such that the sum of all elements in $U$ equals the sum of all elements in $V$. (a) Prove that $8$ is $100$-discerning. (b) Prove that $9$ is not $100$-discerning. [i]Senior Problems Committee of the Australian Mathematical Olympiad Committee[/i]

2001 Baltic Way, 14

Tags: algebra
There are $2n$ cards. On each card some real number $x$, $(1\le x\le 2n)$, is written (there can be different numbers on different cards). Prove that the cards can be divided into two heaps with sums $s_1$ and $s_2$ so that $\frac{n}{n+1}\le\frac{s_1}{s_2}\le 1$.

2015 Costa Rica - Final Round, A2

Determine, if they exist, the real values of $x$ and $y$ that satisfy that $$\frac{x^2}{y^2} +\frac{y^2}{x^2} +\frac{x}{y}+\frac{y}{x} = 0$$ such that $x + y <0.$

2003 Korea - Final Round, 3

Tags: algebra
Show that the equation, $2x^4+2x^2y^2+y^4=z^2$, does not have integer solution when $x \neq 0$.

2013 Baltic Way, 2

Let $k$ and $n$ be positive integers and let $x_1, x_2, \cdots, x_k, y_1, y_2, \cdots, y_n$ be distinct integers. A polynomial $P$ with integer coefficients satisfies \[P(x_1)=P(x_2)= \cdots = P(x_k)=54\] \[P(y_1)=P(y_2)= \cdots = P(y_n)=2013.\] Determine the maximal value of $kn$.

2012 Iran MO (3rd Round), 4

$P(x)$ and $Q(x)$ are two polynomials with integer coefficients such that $P(x)|Q(x)^2+1$. [b]a)[/b] Prove that there exists polynomials $A(x)$ and $B(x)$ with rational coefficients and a rational number $c$ such that $P(x)=c(A(x)^2+B(x)^2)$. [b]b)[/b] If $P(x)$ is a monic polynomial with integer coefficients, Prove that there exists two polynomials $A(x)$ and $B(x)$ with integer coefficients such that $P(x)$ can be written in the form of $A(x)^2+B(x)^2$. [i]Proposed by Mohammad Gharakhani[/i]

2009 Mid-Michigan MO, 5-6

[b]p1.[/b] Anne purchased yesterday at WalMart in Puerto Rico $6$ identical notebooks, $8$ identical pens and $7$ identical erasers. Anne remembers that each eraser costs $73$ cents. She did not buy anything else. Anne told her mother that she spent $12$ dollars and $76$ cents at Walmart. Can she be right? Note that in Puerto Rico there is no sales tax. [b]p2.[/b] Two men ski one after the other first in a flat field and then uphill. In the field the men run with the same velocity $12$ kilometers/hour. Uphill their velocity drops to $8$ kilometers/hour. When both skiers enter the uphill trail segment the distance between them is $300$ meters less than the initial distance in the field. What was the initial distance between skiers? (There are $1000$ meters in 1 kilometer.) [b]p3.[/b] In the equality $** + **** = ****$ all the digits are replaced by $*$. Restore the equality if it is known that any numbers in the equality does not change if we write all its digits in the opposite order. [b]p4.[/b] If a polyleg has even number of legs he always tells truth. If he has an odd number of legs he always lies. Once a green polyleg told a dark-blue polyleg ”- I have $8$ legs. And you have only $6$ legs!” The offended dark-blue polyleg replied ”-It is me who has $8$ legs, and you have only $7$ legs!” A violet polyleg added ”-The dark-blue polyleg indeed has $8$ legs. But I have $9$ legs!” Then a stripped polyleg started: ”-None of you has $8$ legs. Only I have 8 legs!” Which polyleg has exactly $8$ legs? [b]p5.[/b] Cut the figure shown below in two equal pieces. (Both the area and the form of the pieces must be the same.) [img]https://cdn.artofproblemsolving.com/attachments/e/4/778678c1e8748e213ffc94ba71b1f3cc26c028.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2019 BMT Spring, 5

Find the area of the set of all points $ z $ in the complex plane that satisfy $ \left| z - 3i \right| + \left| z - 4 \right| \leq 5\sqrt{2} $.

2025 CMIMC Algebra/NT, 7

Consider a recursively defined sequence $a_n$ with $a_1=1$ such that, for $n \ge 2,$ $a_n$ is formed by appending the last digit of $n$ to the end of $a_{n-1}.$ For a positive integer $m,$ let $\nu_3(m)$ be the largest integer $t$ such that $3^t \mid m.$ Compute $$\sum_{n=1}^{810} \nu_3(a_n).$$

1996 India National Olympiad, 3

Tags: algebra
Solve the following system for real $a , b, c, d, e$: \[ \left\{ \begin{array}{ccc} 3a & = & ( b + c+ d)^3 \\ 3b & = & ( c + d +e ) ^3 \\ 3c & = & ( d + e +a )^3 \\ 3d & = & ( e + a +b )^3 \\ 3e &=& ( a + b +c)^3. \end{array}\right. \]

2022-23 IOQM India, 15

Let $x,y$ be real numbers such that $xy=1$. Let $T$ and $t$ be the largest and smallest values of the expression \\ $\hspace{2cm} \frac{(x+y)^2-(x-y)-2}{(x+y)^2+(x-y)-2}$\\. \\ If $T+t$ can be expressed in the form $\frac{m}{n}$ where $m,n$ are nonzero integers with $GCD(m,n)=1$, find the value of $m+n$.

2018 China Team Selection Test, 5

Suppose the real number $\lambda \in \left( 0,1\right),$ and let $n$ be a positive integer. Prove that the modulus of all the roots of the polynomial $$f\left ( x \right )=\sum_{k=0}^{n}\binom{n}{k}\lambda^{k\left ( n-k \right )}x^{k}$$ are $1.$

2014 Contests, 1

Let $a$, $b$, $c$, $d$ be real numbers such that $b-d \ge 5$ and all zeros $x_1, x_2, x_3,$ and $x_4$ of the polynomial $P(x)=x^4+ax^3+bx^2+cx+d$ are real. Find the smallest value the product $(x_1^2+1)(x_2^2+1)(x_3^2+1)(x_4^2+1)$ can take.

2007 China Team Selection Test, 2

Find all positive integers $ n$ such that there exists sequence consisting of $ 1$ and $ - 1: a_{1},a_{2},\cdots,a_{n}$ satisfying $ a_{1}\cdot1^2 + a_{2}\cdot2^2 + \cdots + a_{n}\cdot n^2 = 0.$

2001 Brazil National Olympiad, 4

A calculator treats angles as radians. It initially displays 1. What is the largest value that can be achieved by pressing the buttons cos or sin a total of 2001 times? (So you might press cos five times, then sin six times and so on with a total of 2001 presses.)

VI Soros Olympiad 1999 - 2000 (Russia), 9.2

Solve the equation $[x]\{x\} = 1999x$, where $[x]$ denotes the largest integer less than or equal to $x$, and $\{x\} = x -[x] $