This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2020 Purple Comet Problems, 8

Tags: algebra
Patrick started walking at a constant rate along a straight road from school to the park. One hour after Patrick left, Tanya started running along the same road from school to the park. One hour after Tanya left, Jose started bicycling along the same road from school to the park. Tanya ran at a constant rate of $2$ miles per hour faster than Patrick walked, Jose bicycled at a constant rate of $7$ miles per hour faster than Tanya ran, and all three arrived at the park at the same time. The distance from the school to the park is $\frac{m}{n}$ miles, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

2015 Saint Petersburg Mathematical Olympiad, 1

Is there a quadratic trinomial $f(x)$ with integer coefficients such that $f(f(\sqrt{2}))=0$ ? [i]A. Khrabrov[/i]

2021 New Zealand MO, 7

Let $a, b, c, d$ be integers such that $a > b > c > d \ge -2021$ and $$\frac{a + b}{b + c}=\frac{c + d}{d + a}$$ (and $b + c \ne 0 \ne d + a$). What is the maximum possible value of $ac$?

2016 Iran Team Selection Test, 4

Tags: algebra
Suppose that a sequence $a_1,a_2,\ldots$ of positive real numbers satisfies \[a_{k+1}\geq\frac{ka_k}{a_k^2+(k-1)}\] for every positive integer $k$. Prove that $a_1+a_2+\ldots+a_n\geq n$ for every $n\geq2$.

1974 IMO Longlists, 21

Let $M$ be a nonempty subset of $\mathbb Z^+$ such that for every element $x$ in $M,$ the numbers $4x$ and $\lfloor \sqrt x \rfloor$ also belong to $M.$ Prove that $M = \mathbb Z^+.$

1990 All Soviet Union Mathematical Olympiad, 516

Find three non-zero reals such that all quadratics with those numbers as coefficients have two distinct rational roots.

2001 Pan African, 3

Let $S_1$ be a semicircle with centre $O$ and diameter $AB$.A circle $C_1$ with centre $P$ is drawn, tangent to $S_1$, and tangent to $AB$ at $O$. A semicircle $S_2$ is drawn, with centre $Q$ on $AB$, tangent to $S_1$ and to $C_1$. A circle $C_2$ with centre $R$ is drawn, internally tangent to $S_1$ and externally tangent to $S_2$ and $C_1$. Prove that $OPRQ$ is a rectangle.

1979 IMO Longlists, 21

Let $E$ be the set of all bijective mappings from $\mathbb R$ to $\mathbb R$ satisfying \[f(t) + f^{-1}(t) = 2t, \qquad \forall t \in \mathbb R,\] where $f^{-1}$ is the mapping inverse to $f$. Find all elements of $E$ that are monotonic mappings.

2000 Abels Math Contest (Norwegian MO), 2b

Let $a,b,c$ and $d$ be non-negative real numbers such that $a+b+c+d = 4$. Show that $\sqrt{a+b+c}+\sqrt{b+c+d}+\sqrt{c+d+a}+\sqrt{d+a+b}\ge 6$.

1997 Rioplatense Mathematical Olympiad, Level 3, 6

Let $N$ be the set of positive integers. Determine if there is a function $f: N\to N$ such that $f(f(n))=2n$, for all $n$ belongs to $N$.

2010 Ukraine Team Selection Test, 3

Find all functions $f$ from the set of real numbers into the set of real numbers which satisfy for all $x$, $y$ the identity \[ f\left(xf(x+y)\right) = f\left(yf(x)\right) +x^2\] [i]Proposed by Japan[/i]

1974 IMO Longlists, 9

Solve the following system of linear equations with unknown $x_1,x_2 \ldots, x_n \ (n \geq 2)$ and parameters $c_1,c_2, \ldots , c_n:$ \[2x_1 -x_2 = c_1;\]\[-x_1 +2x_2 -x_3 = c_2;\]\[-x_2 +2x_3 -x_4 = c_3;\]\[\cdots \qquad \cdots \qquad \cdots \qquad\]\[-x_{n-2} +2x_{n-1} -x_n = c_{n-1};\]\[-x_{n-1} +2x_n = c_n.\]

2016 Latvia National Olympiad, 3

Assume that real numbers $x$, $y$ and $z$ satisfy $x + y + z = 3$. Prove that $xy + xz + yz \leq 3$.

2019 Romanian Master of Mathematics Shortlist, A1

Tags: algebra
Determine all the functions $f:\mathbb R\mapsto\mathbb R$ satisfies the equation $f(a^2 +ab+ f(b^2))=af(b)+b^2+ f(a^2)\,\forall a,b\in\mathbb R $

2021-IMOC, A7

For any positive reals $a,b,c,d$ that satisfy $a^2 + b^2 + c^2 + d^2 = 4,$ show that $$\frac{a^3}{a+b} + \frac{b^3}{b+c} + \frac{c^3}{c+d} + \frac{d^3}{d+a} + 4abcd \leq 6.$$

OMMC POTM, 2024 4

Tags: algebra
A man was born on April 1st, [b]20[/b] BCE and died on April 1st, [b]24[/b] CE. How many years did he live? Clarification: Forget about the time he's born or died, assume he is born and died at the exact precise same time on each day

2013 Indonesia Juniors, day 1

p1. It is known that $f$ is a function such that $f(x)+2f\left(\frac{1}{x}\right)=3x$ for every $x\ne 0$. Find the value of $x$ that satisfies $f(x) = f(-x)$. p2. It is known that ABC is an acute triangle whose vertices lie at circle centered at point $O$. Point $P$ lies on side $BC$ so that $AP$ is the altitude of triangle ABC. If $\angle ABC + 30^o \le \angle ACB$, prove that $\angle COP + \angle CAB < 90^o$. p3. Find all natural numbers $a, b$, and $c$ that are greater than $1$ and different, and fulfills the property that $abc$ divides evenly $bc + ac + ab + 2$. p4. Let $A, B$, and $ P$ be the nails planted on the board $ABP$ . The length of $AP = a$ units and $BP = b$ units. The board $ABP$ is placed on the paths $x_1x_2$ and $y_1y_2$ so that $A$ only moves freely along path $x_1x_2$ and only moves freely along the path $y_1y_2$ as in following image. Let $x$ be the distance from point $P$ to the path $y_1y_2$ and y is with respect to the path $x_1x_2$ . Show that the equation for the path of the point $P$ is $\frac{x^2}{b^2}+\frac{y^2}{a^2}=1$. [img]https://cdn.artofproblemsolving.com/attachments/4/6/d88c337370e8c3bc5a1833bc9588d3fb047bd0.png[/img] p5. There are three boxes $A, B$, and $C$ each containing $3$ colored white balls and $2$ red balls. Next, take three ball with the following rules: 1. Step 1 Take one ball from box $A$. 2. Step 2 $\bullet$ If the ball drawn from box $A$ in step 1 is white, then the ball is put into box $B$. Next from box $B$ one ball is drawn, if it is a white ball, then the ball is put into box $C$, whereas if the one drawn is red ball, then the ball is put in box $A$. $\bullet$ If the ball drawn from box $A$ in step 1 is red, then the ball is put into box $C$. Next from box $C$ one ball is taken. If what is drawn is a white ball then the ball is put into box $A$, whereas if the ball drawn is red, the ball is placed in box $B$. 3. Step 3 Take one ball each from squares $A, B$, and $C$. What is the probability that all the balls drawn in step 3 are colored red?

LMT Guts Rounds, 2019 F

[u]Round 5[/u] [b]p13.[/b] Determine the number of different circular bracelets can be made with $7$ beads, all either colored red or black. [b]p14.[/b] The product of $260$ and $n$ is a perfect square. The $2020$th least possible positive integer value of $n$ can be written as$ p^{e_1}_1 \cdot p^{e_2}_2\cdot p^{e_3}_3\cdot p^{e_4}_4$ . Find the sum $p_1 +p_2 +p_3 +p_4 +e_1 +e_2 +_e3 +e_4$. [b]p15.[/b] Let $B$ and $C$ be points along the circumference of circle $\omega$. Let $A$ be the intersection of the tangents at $B$ and $C$ and let $D \ne A$ be on $\overrightarrow{AC}$ such that $AC =CD = 6$. Given $\angle BAC = 60^o$, find the distance from point $D$ to the center of $\omega$. [u]Round 6[/u] [b]p16.[/b] Evaluate $\sqrt{2+\sqrt{2+\sqrt{2+...}}}$. [b]p17.[/b] Let $n(A)$ be the number of elements of set $A$ and $||A||$ be the number of subsets of set $A$. Given that $||A||+2||B|| = 2^{2020}$, find the value of $n(B)$. [b]p18.[/b] $a$ and $b$ are positive integers and $8^a9^b$ has $578$ factors. Find $ab$. [u]Round 7[/u] [b]p19.[/b] Determine the probability that a randomly chosen positive integer is relatively prime to $2019$. [b]p20.[/b] A $3$-by-$3$ grid of squares is to be numbered with the digits $1$ through $9$ such that each number is used once and no two even-numbered squares are adjacent. Determine the number of ways to number the grid. [b]p21.[/b] In $\vartriangle ABC$, point $D$ is on $AC$ so that $\frac{AD}{DC}= \frac{1}{13}$ . Let point $E$ be on $BC$, and let $F$ be the intersection of $AE$ and $BD$. If $\frac{DF}{FB}=\frac{2}{7}$ and the area of $\vartriangle DBC$ is $26$, compute the area of $\vartriangle F AB$. [u]Round 8[/u] [b]p22.[/b] A quarter circle with radius $1$ is located on a line with its horizontal base on the line and to the left of the vertical side. It is then rolled to the right until it reaches its original orientation. Determine the distance traveled by the center of the quarter circle. [b]p23.[/b] In $1734$, mathematician Leonhard Euler proved that $\frac{\pi^2}{6}=\frac11+\frac14+\frac19+\frac{1}{16}+...$. With this in mind, calculate the value of $\frac11-\frac14+\frac19-\frac{1}{16}+...$ (the series obtained by negating every other term of the original series). [b]p24.[/b] Billy the biker is competing in a bike show where he can do a variety of tricks. He knows that one trick is worth $2$ points, $1$ trick is worth $3$ points, and 1 is worth $5$ points, but he doesn’t remember which trick is worth what amount. When it’s Billy’s turn to perform, he does $6$ tricks, randomly choosing which trick to do. Compute the sum of all the possible values of points that Billy could receive in total. PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h3166016p28809598]here [/url] and 9-12 [url=https://artofproblemsolving.com/community/c3h3166115p28810631]here[/url].Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2016 NIMO Problems, 2

Tags: function , algebra
For real numbers $x$ and $y$, define \[\nabla(x,y)=x-\dfrac1y.\] If \[\underbrace{\nabla(2, \nabla(2, \nabla(2, \ldots \nabla(2,\nabla(2, 2)) \ldots)))}_{2016 \,\nabla\text{s}} = \dfrac{m}{n}\] for relatively prime positive integers $m$, $n$, compute $100m + n$. [i] Proposed by David Altizio [/i]

1991 India National Olympiad, 6

Tags: induction , algebra
(i) Determine the set of all positive integers $n$ for which $3^{n+1}$ divides $2^{3^n} + 1$; (ii) Prove that $3^{n+2}$ does not divide $2^{3^n} + 1$ for any positive integer $n$.

2024 Chile Classification NMO Juniors, 1

Tags: algebra
Victor has four types of coins: gold, silver, bronze, and copper. All coins of the same type have the same weight, which is an integer number of grams. Victor performs two weighings: - He takes 6 gold coins, 13 silver coins, 3 bronze coins, and 7 copper coins, and the total weight on the scale is 162 grams. - He takes 15 gold coins, 5 silver coins, and 11 bronze coins, and the total weight on the scale is 110 grams. Determine the weight of each type of coin.

2021 Estonia Team Selection Test, 2

Positive real numbers $a, b, c$ satisfy $abc = 1$. Prove that $$\frac{a}{1+b}+\frac{b}{1+c}+\frac{c}{1+a} \ge \frac32$$

1993 Swedish Mathematical Competition, 2

Tags: algebra
A railway line is divided into ten sections by the stations $A,B,C,D,E,F, G,H,I,J,K$. The length of each section is an integer number of kilometers and the distacne between $A$ and $K$ is $56$ km. A trip along two successive sections never exceeds $12$ km, but a trip along three successive sections is at least $17$ km. What is the distance between $B$ and $G$? [img]https://cdn.artofproblemsolving.com/attachments/1/f/202ddf633ed6da8692bf4d0b1fc0af59548526.png[/img]

2019 India IMO Training Camp, P2

Tags: algebra , function
Determine all functions $f:(0,\infty)\to\mathbb{R}$ satisfying $$\left(x+\frac{1}{x}\right)f(y)=f(xy)+f\left(\frac{y}{x}\right)$$ for all $x,y>0$.

2015 Cuba MO, 9

Determine the largest possible value of$ M$ for which it holds that: $$\frac{x}{1 +\dfrac{yz}{x}}+ \frac{y}{1 + \dfrac{zx}{y}}+ \frac{z}{1 + \dfrac{xy}{z}} \ge M,$$ for all real numbers $x, y, z > 0$ that satisfy the equation $xy + yz + zx = 1$.