This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1981 AMC 12/AHSME, 21

In a triangle with sides of lengths $a,b,$ and $c,$ $(a+b+c)(a+b-c) = 3ab.$ The measure of the angle opposite the side length $c$ is $\displaystyle \text{(A)} \ 15^\circ \qquad \text{(B)} \ 30^\circ \qquad \text{(C)} \ 45^\circ \qquad \text{(D)} \ 60^\circ \qquad \text{(E)} \ 150^\circ$

Kvant 2024, M2799

Let $n$ be a positive integer. Ilya and Sasha both choose a pair of different polynomials of degree $n$ with real coefficients. Lenya knows $n$, his goal is to find out whether Ilya and Sasha have the same pair of polynomials. Lenya selects a set of $k$ real numbers $x_1<x_2<\dots<x_k$ and reports these numbers. Then Ilya fills out a $2 \times k$ table: For each $i=1,2,\dots,k$ he writes a pair of numbers $P(x_i),Q(x_i)$ (in any of the two possible orders) intwo the two cells of the $i$-th column, where $P$ and $Q$ are his polynomials. Sasha fills out a similar table. What is the minimal $k$ such that Lenya can surely achieve the goal by looking at the tables? [i]Proposed by L. Shatunov[/i]

2018 ELMO Shortlist, 4

Elmo calls a monic polynomial with real coefficients [i]tasty[/i] if all of its coefficients are in the range $[-1,1]$. A monic polynomial $P$ with real coefficients and complex roots $\chi_1,\cdots,\chi_m$ (counted with multiplicity) is given to Elmo, and he discovers that there does not exist a monic polynomial $Q$ with real coefficients such that $PQ$ is tasty. Find all possible values of $\max\left(|\chi_1|,\cdots,|\chi_m|\right)$. [i]Proposed by Carl Schildkraut[/i]

2020 New Zealand MO, 1

Let $P(x) = x^3 - 2x + 1$ and let $Q(x) = x^3 - 4x^2 + 4x - 1$. Show that if $P(r) = 0$ then $Q(r^2) = 0$.

2000 Harvard-MIT Mathematics Tournament, 7

Suppose you are given a fair coin and a sheet of paper with the polynomial $x^m$ written on it. Now for each toss of the coin, if heads show up, you must erase the polynomial $x^r$ (where $r$ is going to change with time - initially it is $m$) written on the paper and replace it with $x^{r-1}$. If tails show up, replace it with $x^{r+1}$. What is the expected value of the polynomial I get after $m$ such tosses? (Note: this is a different concept from the most probable value)

2007 IMC, 5

Let $ n$ be a positive integer and $ a_{1}, \ldots, a_{n}$ be arbitrary integers. Suppose that a function $ f: \mathbb{Z}\to \mathbb{R}$ satisfies $ \sum_{i=1}^{n}f(k+a_{i}l) = 0$ whenever $ k$ and $ l$ are integers and $ l \ne 0$. Prove that $ f = 0$.

PEN E Problems, 4

Prove that $1280000401$ is composite.

2021 Alibaba Global Math Competition, 17

Let $p$ be a prime number and let $\mathbb{F}_p$ be the finite field with $p$ elements. Consider an automorphism $\tau$ of the polynomial ring $\mathbb{F}_p[x]$ given by \[\tau(f)(x)=f(x+1).\] Let $R$ denote the subring of $\mathbb{F}_p[x]$ consisting of those polynomials $f$ with $\tau(f)=f$. Find a polynomial $g \in \mathbb{F}_p[x]$ such that $\mathbb{F}_p[x]$ is a free module over $R$ with basis $g,\tau(g),\dots,\tau^{p-1}(g)$.

2015 Hanoi Open Mathematics Competitions, 15

Let the numbers $a, b,c$ satisfy the relation $a^2+b^2+c^2+d^2 \le 12$. Determine the maximum value of $M = 4(a^3 + b^3 + c^3+d^3) - (a^4 + b^4 + c^4+d^4)$

2018 Romania Team Selection Tests, 3

Given an integer $n \geq 2$ determine the integral part of the number $ \sum_{k=1}^{n-1} \frac {1} {({1+\frac{1} {n}}) \dots ({1+\frac {k} {n})}}$ - $\sum_{k=1}^{n-1} (1-\frac {1} {n}) \dots(1-\frac{k}{n})$

2022 CMWMC, R4

[u]Set 4[/u] [b]p10.[/b] Eve has nine letter tiles: three $C$’s, three $M$’s, and three $W$’s. If she arranges them in a random order, what is the probability that the string “$CMWMC$” appears somewhere in the arrangement? [b]p11.[/b] Bethany’s Batteries sells two kinds of batteries: $C$ batteries for $\$4$ per package, and $D$ batteries for $\$7$ per package. After a busy day, Bethany looks at her ledger and sees that every customer that day spent exactly $\$2021$, and no two of them purchased the same quantities of both types of battery. Bethany also notes that if any other customer had come, at least one of these two conditions would’ve had to fail. How many packages of batteries did Bethany sell? [b]p12.[/b] A deck of cards consists of $30$ cards labeled with the integers $1$ to $30$, inclusive. The cards numbered $1$ through $15$ are purple, and the cards numbered $16$ through $30$ are green. Lilith has an expansion pack to the deck that contains six indistinguishable copies of a green card labeled with the number $32$. Lilith wants to pick from the expanded deck a hand of two cards such that at least one card is green. Find the number of distinguishable hands Lilith can make with this deck. PS. You should use hide for answers.

2014 NZMOC Camp Selection Problems, 7

Determine all pairs of real numbers $(k, d)$ such that the system of equations $$\begin{cases} x^3 + y^3 = 2 \\ kx + d = y\end{cases}$$ has no solutions $(x, y)$ with $x$ and $y$ real numbers.

1973 Czech and Slovak Olympiad III A, 3

Let $\left(a_k\right)_{k=1}^\infty$ be a sequence of real numbers such that \[a_{k-1}+a_{k+1}\ge2a_k\] for all $k>1.$ For $n\ge1$ denote \[A_n=\frac1n\left(a_1+\cdots+a_n\right).\] Show that also the inequality \[A_{n-1}+A_{n+1}\ge2A_n\] holds for every $n>1.$

2017 Harvard-MIT Mathematics Tournament, 6

A positive integer $n$ is [i]magical[/i] if $\lfloor \sqrt{\lceil \sqrt{n} \rceil} \rfloor=\lceil \sqrt{\lfloor \sqrt{n} \rfloor} \rceil$. Find the number of magical integers between $1$ and $10,000$ inclusive.

MathLinks Contest 2nd, 4.1

The real polynomial $f \in R[X]$ has an odd degree and it is given that $f$ is co-prime with $g(x) = x^2 - x - 1$ and $$f(x^2 - 1) = f(x)f(-x), \forall x \in R.$$ Prove that $f$ has at least two complex non-real roots.

1995 May Olympiad, 5

A tortoise walks $60$ meters per hour and a lizard walks at $240$ meters per hour. There is a rectangle $ABCD$ where $AB =60$ and $AD =120$. Both start from the vertex $A$ and in the same direction ($A \to B \to D \to A$), crossing the edge of the rectangle. The lizard has the habit of advancing two consecutive sides of the rectangle, turning to go back one, turning to go forward two, turning to go back one and so on. How many times and in what places do the tortoise and the lizard meet when the tortoise completes its third turn?

1995 Tuymaada Olympiad, 7

Find a continuous function $f(x)$ satisfying the identity $f(x)-f(ax)=x^n-x^m$, where $n,m\in N , 0<a<1$

2021 China Second Round Olympiad, Problem 11

The function $f(x) = x^2+ax+b$ has two distinct zeros. If $f(x^2+2x-1)=0$ has four distinct zeros $x_1<x_2<x_3<x_4$ that form an arithmetic sequence, compute the range of $a-b$. [i](Source: China National High School Mathematics League 2021, Zhejiang Province, Problem 11)[/i]

2015 Romania National Olympiad, 4

Let be a finite set $ A $ of real numbers, and define the sets $ S_{\pm }=\{ x\pm y| x,y\in A \} . $ Show that $ \left| A \right|\cdot\left| S_{-} \right| \le \left| S_{+} \right|^2 . $

1966 Dutch Mathematical Olympiad, 5

The image that maps $x$ to $1 - x$ is called [i]complement[/i], the image that maps $x$ to $\frac{1}{x}$ is called [i]invert[/i]. Two numbers $x$ and $y$ are called related if they can be transferred into each other by means of [i]complementation [/i]and/or [i]inversion[/i]. A [i]family [/i] is a collection of numbers where every two elements are related. Determine the maximum size $n$ of such a family. Show that the number line can be divided into $n$ parts, such that each of those $n$ parts contains exactly one number from each $n$-number family.

2006 ITAMO, 5

Consider the inequality \[(a_1+a_2+\dots+a_n)^2\ge 4(a_1a_2+a_2a_3+\cdots+a_na_1).\] a) Find all $n\ge 3$ such that the inequality is true for positive reals. b) Find all $n\ge 3$ such that the inequality is true for reals.

V Soros Olympiad 1998 - 99 (Russia), 8.1 - 8.4

[b]p1.[/b] Is it possible to write $5$ different fractions that add up to $1$, such that their numerators are equal to one and their denominators are natural numbers? [b]p2.[/b] The following is known about two numbers $x$ and $y$: if $x\ge 0$, then $y = 1 -x$; if $y\le 1$, then $x = 1 + y$; if $x\le 1$, then $x = |1 + y|$. Find $x$ and $y$. [b]p3.[/b] Five people living in different cities received a salary, some more, others less ($143$, $233$, $313$, $410$ and $413$ rubles). Each of them can send money to the other by mail. In this case, the post office takes $10\%$ of the amount of money sent for the transfer (in order to receive $100$ rubles, you need to send $10\%$ more, that is, $110$ rubles). They want to send money so that everyone has the same amount of money, and the post office receives as little money as possible. How much money will each person have using the most economical shipping method? [b]p4.[/b] a) List three different natural numbers $m$, $n$ and $k$ for which $m! = n! \cdot k!$ . b) Is it possible to come up with $1999$ such triplets? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]

1929 Eotvos Mathematical Competition, 2

Let $k \le n$ be positive integers and $x$ be a real number with $0 \le x < 1/n$. Prove that $${n \choose 0} - {n \choose 1} x +{n \choose 2} x^2 - ... + (-1)^k {n \choose k} x^k > 0$$

II Soros Olympiad 1995 - 96 (Russia), 10.7

Let us denote by $<a>$ the distance from $a$ to the nearest integer. (For example, $<1,2> = 0.2$, $<\sqrt3> = 2-\sqrt3$) How many solutions does the system of equations have $$\begin{cases} <19x>=y \\ <96y>=x \end{cases} \,\,\, ?$$

VI Soros Olympiad 1999 - 2000 (Russia), 10.8

Find the smallest positive period of the function $f(x)=\sin (1998x)+ \sin (2000x)$