This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2013 USA TSTST, 6

Let $\mathbb N$ be the set of positive integers. Find all functions $f: \mathbb N \to \mathbb N$ that satisfy the equation \[ f^{abc-a}(abc) + f^{abc-b}(abc) + f^{abc-c}(abc) = a + b + c \] for all $a,b,c \ge 2$. (Here $f^1(n) = f(n)$ and $f^k(n) = f(f^{k-1}(n))$ for every integer $k$ greater than $1$.)

2003 Estonia National Olympiad, 2

Find all positive integers $n$ such that $n+ \left[ \frac{n}{6} \right] \ne \left[ \frac{n}{2} \right] + \left[ \frac{2n}{3} \right]$

MMPC Part II 1958 - 95, 1994

[b]p1.[/b] Al usually arrives at the train station on the commuter train at $6:00$, where his wife Jane meets him and drives him home. Today Al caught the early train and arrived at $5:00$. Rather than waiting for Jane, he decided to jog along the route he knew Jane would take and hail her when he saw her. As a result, Al and Jane arrived home $12$ minutes earlier than usual. If Al was jogging at a constant speed of $5$ miles per hour, and Jane always drives at the constant speed that would put her at the station at $6:00$, what was her speed, in miles per hour? [b]p2.[/b] In the figure, points $M$ and $N$ are the respective midpoints of the sides $AB$ and $CD$ of quadrilateral $ABCD$. Diagonal $AC$ meets segment $MN$ at $P$, which is the midpoint of $MN$, and $AP$ is twice as long as $PC$. The area of triangle $ABC$ is $6$ square feet. (a) Find, with proof, the area of triangle $AMP$. (b) Find, with proof, the area of triangle $CNP$. (c) Find, with proof, the area of quadrilateral $ABCD$. [img]https://cdn.artofproblemsolving.com/attachments/a/c/4bdcd8390bae26bc90fc7eae398ace06900a67.png[/img] [b]p3.[/b] (a) Show that there is a triangle whose angles have measure $\tan^{-1}1$, $\tan^{-1}2$ and $\tan^{-1}3$. (b) Find all values of $k$ for which there is a triangle whose angles have measure $\tan^{-1}\left(\frac12 \right)$, $\tan^{-1}\left(\frac12 +k\right)$, and $\tan^{-1}\left(\frac12 +2k\right)$ [b]p4.[/b] (a) Find $19$ consecutive integers whose sum is as close to $1000$ as possible. (b) Find the longest possible sequence of consecutive odd integers whose sum is exactly $1000$, and prove that your sequence is the longest. [b]p5.[/b] Let $AB$ and $CD$ be chords of a circle which meet at a point $X$ inside the circle. (a) Suppose that $\frac{AX}{BX}=\frac{CX}{DX}$. Prove that $|AB|=|CD|$. (b) Suppose that $\frac{AX}{BX}>\frac{CX}{DX}>1$. Prove that $|AB|>|CD|$. ($|PQ|$ means the length of the segment $PQ$.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2017 Thailand Mathematical Olympiad, 9

Determine all functions $f$ on the set of positive rational numbers such that $f(xf(x) + f(y)) = f(x)^2 + y$ for all positive rational numbers $x, y$.

1993 IMO, 1

Let $n > 1$ be an integer and let $f(x) = x^n + 5 \cdot x^{n-1} + 3.$ Prove that there do not exist polynomials $g(x),h(x),$ each having integer coefficients and degree at least one, such that $f(x) = g(x) \cdot h(x).$

2018 Balkan MO Shortlist, A5

Let $f: \mathbb {R} \to \mathbb {R}$ be a concave function and $g: \mathbb {R} \to \mathbb {R}$ be a continuous function . If $$ f (x + y) + f (x-y) -2f (x) = g (x) y^2 $$for all $x, y \in \mathbb {R}, $ prove that $f $ is a second degree polynomial.

1975 Poland - Second Round, 1

The polynomial $ W(x) = x^4 + ax^3 + bx + cx + d $ is given. Prove that if the equation $ W(x) = 0 $ has four real roots, then for there to exist $ m $ such that $ W(x+m) = x^4+px^2+q $, it is necessary and it is enough that the sum of certain two roots of the equation $ W(x) = 0 $ equals the sum of the remaining ones.

2021 Germany Team Selection Test, 3

Suppose that $a,b,c,d$ are positive real numbers satisfying $(a+c)(b+d)=ac+bd$. Find the smallest possible value of $$\frac{a}{b}+\frac{b}{c}+\frac{c}{d}+\frac{d}{a}.$$ [i]Israel[/i]

2018 Iran MO (1st Round), 19

Let $x \geq y \geq z$ be positive real numbers such that \begin{align*}x^2+y^2+z^2 \geq 2xy+2yz+2zx.\end{align*} What is the minimum value of $\frac{x}{z}$? $\textbf{(A)}\ 1\qquad\textbf{(B)}\ \sqrt 2\qquad\textbf{(C)}\ \sqrt 3\qquad\textbf{(D)}\ 2\qquad\textbf{(E)}\ 4$

2017 Princeton University Math Competition, A2

Tags: algebra
Let $a_1, a_2, a_3, ...$ be a monotonically decreasing sequence of positive real numbers converging to zero. Suppose that $\Sigma_{i=1}^{\infty}\frac{a_i}{i}$ diverges. Show that $\Sigma_{i=1}^{\infty}a_i^{2^{2017}}$ also diverges. You may assume in your proof that $\Sigma_{i=1}^{\infty}\frac{1}{i^p}$ converges for all real numbers $p > 1$. (A sum $\Sigma_{i=1}^{\infty}b_i$ of positive real numbers $b_i$ diverges if for each real number $N$ there is a positive integer $k$ such that $b_1+b_2+...+b_k > N$.)

2022 Macedonian Team Selection Test, Problem 2

Let $n \geq 2$ be a fixed positive integer and let $a_{0},a_{1},...,a_{n-1}$ be real numbers. Assume that all of the roots of the polynomial $P(x) = x^n+a_{n-1}x^{n-1}+a_{n-2}x^{n-2}+...+a_{1}x+a_{0}$ are strictly positive real numbers. Determine the smallest possible value of $\frac{a_{n-1}^{2}}{a_{n-2}}$ over all such polynomials. [i]Proposed by Nikola Velov[/i]

2004 Belarusian National Olympiad, 5

Tags: algebra
Suppose that $A$ and $B$ are sets of real numbers such that $$A\subset B+\alpha \mathbb{Z}\quad \text{and}\quad B\subset A+\alpha\mathbb{Z}\quad \text{for all}\quad \alpha>0$$ (where $X+\alpha\mathbb=\{x+\alpha n|x\in\mathbb{X}, n\in\mathbb{Z}\}$ (a) Does it follow that $A=B$ (b) The same question, with the assumption that $B$ is bounded

2014 NIMO Problems, 7

Let $P(n)$ be a polynomial of degree $m$ with integer coefficients, where $m \le 10$. Suppose that $P(0)=0$, $P(n)$ has $m$ distinct integer roots, and $P(n)+1$ can be factored as the product of two nonconstant polynomials with integer coefficients. Find the sum of all possible values of $P(2)$. [i]Proposed by Evan Chen[/i]

2021 SYMO, Q2

Let $n\geq 3$ be a fixed positive integer. Determine the minimum possible value of \[\sum_{1\leq i<j<k\leq n} \max(x_ix_j + x_k, x_jx_k + x_i, x_kx_i + x_j)^2\]over all non-negative reals $x_1,x_2,\dots,x_n$ satisfying $x_1+x_2+\dots+x_n=n$.

2007 Indonesia TST, 2

Tags: algebra , function
Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ f(f(x \plus{} y)) \equal{} f(x \plus{} y) \plus{} f(x)f(y) \minus{} xy\] for all real numbers $x$ and $y$.

2020 Romanian Masters In Mathematics, 4

Tags: function , algebra
Let $\mathbb N$ be the set of all positive integers. A subset $A$ of $\mathbb N$ is [i]sum-free[/i] if, whenever $x$ and $y$ are (not necessarily distinct) members of $A$, their sum $x+y$ does not belong to $A$. Determine all surjective functions $f:\mathbb N\to\mathbb N$ such that, for each sum-free subset $A$ of $\mathbb N$, the image $\{f(a):a\in A\}$ is also sum-free. [i]Note: a function $f:\mathbb N\to\mathbb N$ is surjective if, for every positive integer $n$, there exists a positive integer $m$ such that $f(m)=n$.[/i]

2004 Swedish Mathematical Competition, 4

If $0 < v <\frac{\pi}{2}$ and $\tan v = 2v$, decide whether $sinv < \frac{20}{21}$.

1991 All Soviet Union Mathematical Olympiad, 552

$p(x)$ is the cubic $x^3 - 3x^2 + 5x$. If $h$ is a real root of $p(x) = 1$ and $k$ is a real root of $p(x) = 5$, find $h + k$.

2002 Korea - Final Round, 2

Tags: algebra , function
Find all functions $f:\mathbb{R}\to \mathbb{R}$ satisfying $f(x-y)=f(x)+xy+f(y)$ for every $x \in \mathbb{R}$ and every $y \in \{f(x) \mid x\in \mathbb{R}\}$, where $\mathbb{R}$ is the set of real numbers.

2024 Korea National Olympiad, 2

Tags: algebra
For a sequence of positive integers $\{x_n\}$ where $x_1 = 2$ and $x_{n + 1} - x_n \in \{0, 3\}$ for all positve integers $n$, then $\{x_n\}$ is called a "frog sequence". Find all real numbers $d$ that satisfy the following condition. [b](Condition)[/b] For two frog sequence $\{a_n\}, \{b_n\}$, if there exists a positive integer $n$ such that $a_n = 1000b_n$, then there exists a positive integer $m$ such that $a_m = d\cdot b_m$.

2017 India PRMO, 6

Tags: sum , algebra
Let the sum $\sum_{n=1}^{9} \frac{1}{n(n+1)(n+2)}$ written in its lowest terms be $\frac{p}{q}$ . Find the value of $q - p$.

2022 ABMC, Team

[u]Round 1[/u] [b]1.1[/b] If the sum of two non-zero integers is $28$, then find the largest possible ratio of these integers. [b]1.2[/b] If Tom rolls a eight-sided die where the numbers $1$ − $8$ are all on a side, let $\frac{m}{n}$ be the probability that the number is a factor of $16$ where $m, n$ are relatively prime positive integers. Find $m + n$. [b]1.3[/b] The average score of $35$ second graders on an IQ test was $180$ while the average score of $70$ adults was $90$. What was the total average IQ score of the adults and kids combined? [u]Round 2[/u] [b]2.1[/b] So far this year, Bob has gotten a $95$ and a 98 in Term $1$ and Term $2$. How many different pairs of Term $3$ and Term $4$ grades can Bob get such that he finishes with an average of $97$ for the whole year? Bob can only get integer grades between $0$ and $100$, inclusive. [b]2.2[/b] If a complement of an angle $M$ is one-third the measure of its supplement, then what would be the measure (in degrees) of the third angle of an isosceles triangle in which two of its angles were equal to the measure of angle $M$? [b]2.3[/b] The distinct symbols $\heartsuit, \diamondsuit, \clubsuit$ and $\spadesuit$ each correlate to one of $+, -, \times , \div$, not necessarily in that given order. Given that $$((((72 \,\, \,\, \diamondsuit \,\, \,\,36) \,\, \,\,\spadesuit \,\, \,\,0 ) \,\, \,\, \diamondsuit \,\, \,\, 32) \,\, \,\, \clubsuit \,\, \,\, 3)\,\, \,\, \heartsuit \,\, \,\, 2 = \,\, \,\, 6,$$ what is the value of $$(((((64 \,\, \,\, \spadesuit \,\, \,\, 8) \heartsuit \,\, \,\, 6) \,\, \,\, \spadesuit \,\, \,\, 5) \,\, \,\, \heartsuit \,\, \,\, 1) \,\, \,\, \clubsuit \,\, \,\, 7) \,\, \,\, \diamondsuit \,\, \,\, 1?$$ [u]Round 3[/u] [b]3.1[/b] How many ways can $5$ bunnies be chosen from $7$ male bunnies and $9$ female bunnies if a majority of female bunnies is required? All bunnies are distinct from each other. [b]3.2[/b] If the product of the LCM and GCD of two positive integers is $2021$, what is the product of the two positive integers? [b]3.3[/b] The month of April in ABMC-land is $50$ days long. In this month, on $44\%$ of the days it rained, and on $28\%$ of the days it was sunny. On half of the days it was sunny, it rained as well. The rest of the days were cloudy. How many days were cloudy in April in ABMC-land? [u]Round 4[/u] [b]4.1[/b] In how many ways can $4$ distinct dice be rolled such that a sum of $10$ is produced? [b]4.2[/b] If $p, q, r$ are positive integers such that $p^3\sqrt{q}r^2 = 50$, find the sum of all possible values of $pqr$. [b]4.3[/b] Given that numbers $a, b, c$ satisfy $a + b + c = 0$, $\frac{a}{b}+\frac{b}{c}+\frac{c}{a}= 10$, and $ab + bc + ac \ne 0$, compute the value of $\frac{-a^2 - b^2 - a^2}{ab + bc + ac}$. PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2826137p24988781]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2018 ABMC, Team

[u]Round 5[/u] [b]5.1.[/b] A triangle has lengths such that one side is $12$ less than the sum of the other two sides, the semi-perimeter of the triangle is $21$, and the largest and smallest sides have a difference of $2$. Find the area of this triangle. [b]5.2.[/b] A rhombus has side length $85$ and diagonals of integer lengths. What is the sum of all possible areas of the rhombus? [b]5.3.[/b] A drink from YAKSHAY’S SHAKE SHOP is served in a container that consists of a cup, shaped like an upside-down truncated cone, and a semi-spherical lid. The ratio of the radius of the bottom of the cup to the radius of the lid is $\frac23$ , the volume of the combined cup and lid is $296\pi$, and the height of the cup is half of the height of the entire drink container. What is the volume of the liquid in the cup if it is filled up to half of the height of the entire drink container? [u]Round 6[/u] [i]Each answer in the next set of three problems is required to solve a different problem within the same set. There is one correct solution to all three problems; however, you will receive points for any correct answer regardless whether other answers are correct.[/i] [b]6.1.[/b] Let the answer to problem $2$ be $b$. There are b people in a room, each of which is either a truth-teller or a liar. Person $1$ claims “Person $2$ is a liar,” Person $2$ claims “Person $3$ is a liar,” and so on until Person $b$ claims “Person $1$ is a liar.” How many people are truth-tellers? [b]6.2.[/b] Let the answer to problem $3$ be $c$. What is twice the area of a triangle with coordinates $(0, 0)$, $(c, 3)$ and $(7, c)$ ? [b]6.3.[/b] Let the answer to problem $ 1$ be $a$. Compute the smaller zero to the polynomial $x^2 - ax + 189$ which has $2$ integer roots. [u]Round 7[/u] [b]7.1. [/b]Sir Isaac Neeton is sitting under a kiwi tree when a kiwi falls on his head. He then discovers Neeton’s First Law of Kiwi Motion, which states: [i]Every minute, either $\left\lfloor \frac{1000}{d} \right\rfloor$ or $\left\lceil \frac{1000}{d} \right\rceil$ kiwis fall on Neeton’s head, where d is Neeton’s distance from the tree in centimeters.[/i] Over the next minute, $n$ kiwis fall on Neeton’s head. Let $S$ be the set of all possible values of Neeton’s distance from the tree. Let m and M be numbers such that $m < x < M$ for all elements $x$ in $S$. If the least possible value of $M - m$ is $\frac{2000}{16899}$ centimeters, what is the value of $n$? Note that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, and $\lceil x \rceil$ is the least integer greater than or equal to $x$. [b]7.2.[/b] Nithin is playing chess. If one queen is randomly placed on an $ 8 \times 8$ chessboard, what is the expected number of squares that will be attacked including the square that the queen is placed on? (A square is under attack if the queen can legally move there in one move, and a queen can legally move any number of squares diagonally, horizontally or vertically.) [b]7.3.[/b] Nithin is writing binary strings, where each character is either a $0$ or a $1$. How many binary strings of length $12$ can he write down such that $0000$ and $1111$ do not appear? [u]Round 8[/u] [b]8.[/b] What is the period of the fraction $1/2018$? (The period of a fraction is the length of the repeated portion of its decimal representation.) Your answer will be scored according to the following formula, where $X$ is the correct answer and $I$ is your input. $$max \left\{ 0, \left\lceil min \left\{13 - \frac{|I-X|}{0.1 |I|}, 13 - \frac{|I-X|}{0.1 |I-2X|} \right\} \right\rceil \right\}$$ PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2765571p24215461]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2002 India IMO Training Camp, 10

Let $ T$ denote the set of all ordered triples $ (p,q,r)$ of nonnegative integers. Find all functions $ f: T \rightarrow \mathbb{R}$ satisfying \[ f(p,q,r) = \begin{cases} 0 & \text{if} \; pqr = 0, \\ 1 + \frac{1}{6}(f(p + 1,q - 1,r) + f(p - 1,q + 1,r) & \\ + f(p - 1,q,r + 1) + f(p + 1,q,r - 1) & \\ + f(p,q + 1,r - 1) + f(p,q - 1,r + 1)) & \text{otherwise} \end{cases} \] for all nonnegative integers $ p$, $ q$, $ r$.

1990 Turkey Team Selection Test, 2

For real numbers $x_i$, the statement \[ x_1 + x_2 + x_3 = 0 \Rightarrow x_1x_2 + x_2x_3 + x_3x_1 \leq 0\] is always true. (Prove!) For which $n\geq 4$ integers, the statement \[x_1 + x_2 + \dots + x_n = 0 \Rightarrow x_1x_2 + x_2x_3 + \dots + x_{n-1}x_n + x_nx_1 \leq 0\] is always true. Justify your answer.