This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2013 Baltic Way, 20

Find all polynomials $f$ with non-negative integer coefficients such that for all primes $p$ and positive integers $n$ there exist a prime $q$ and a positive integer $m$ such that $f(p^n)=q^m$.

2011 VTRMC, Problem 2

A sequence $(a_n)$ is defined by $a_0=-1,a_1=0$, and $a_{n+1}=a_n^2-(n+1)^2a_{n-1}-1$ for all positive integers $n$. Find $a_{100}$.

2019 IFYM, Sozopol, 7

The function $f: \mathbb{R}\rightarrow \mathbb{R}$ is such that $f(x+1)=2f(x)$ for $\forall$ $x\in \mathbb{R}$ and $f(x)=x(x-1)$ for $\forall$ $x\in (0,1]$. Find the greatest real number $m$, for which the inequality $f(x)\geq -\frac{8}{9}$ is true for $\forall$ $x\in (-\infty , m]$.

2001 Saint Petersburg Mathematical Olympiad, 10.6

For any positive integers $n>m$ prove the following inequality: $$[m,n]+[m+1,n+1]\geq 2m\sqrt{n}$$ As usual, [x,y] denotes the least common multiply of $x,y$ [I]Proposed by A. Golovanov[/i]

2020 Final Mathematical Cup, 1

Find all such functions $f:\mathbb{R} \to \mathbb{R}$ that for any real $x,y$ the following equation is true. $$f(f(x)+y)+1=f(x^2+y)+2f(x)+2y$$

2010 QEDMO 7th, 8

Let $(a_1, a_2,..., a_n)$ and $(b_1, b_2, ..., b_n)$ be two sequences of positive real numbers. Let $\pi$ be a permutation of the set $\{1, 2, ..., n\}$, for which the sum $a_{\pi(1)}(b_{\pi(1)}+b_{\pi(2)}+...+b_{\pi(n)})+a_{\pi(2)}(b_{\pi(3)}+b_{\pi(3)}+...+b_{\pi(n)})+...+a_{\pi(n)}b_{\pi(n)}$ is minimal. Proce for this permutation $\pi$, that $$ \frac{a_{\pi(1)}}{b_{\pi(1)}}\le \frac{a_{\pi(2})}{b_{\pi(2)}}\le ... \le \frac{a_{\pi(n)}}{b_{\pi(n)}}$$ Application: In an idealized role-playing game you fight against $n$ opponents at the same time. In order to minimize the damage you suffer yourself, you should first take care of your opponent for the ratio of the time it takes to defeat him (if you only focus on him), and the damage it does per second is minimal; next, one should fight the opponent with the second smallest such ratio, and so on.

2001 Bulgaria National Olympiad, 2

Tags: algebra
Find all real values $t$ for which there exist real numbers $x$, $y$, $z$ satisfying : $3x^2 + 3xz + z^2 = 1$ , $3y^2 + 3yz + z^2 = 4$, $x^2 - xy + y^2 = t$.

2006 District Olympiad, 1

Let $x,y,z$ be positive real numbers. Prove the following inequality: \[ \frac 1{x^2+yz} + \frac 1{y^2+zx } + \frac 1{z^2+xy} \leq \frac 12 \left( \frac 1{xy} + \frac 1{yz} + \frac 1{zx} \right). \]

2013 Bogdan Stan, 2

Consider the parametric function $ f_k:\mathbb{R}\longrightarrow\mathbb{R}, f(x)=x+k\lfloor x \rfloor . $ [b]a)[/b] For which integer values of $ k $ the above function is injective? [b]b)[/b] For which integer values of $ k $ the above function is surjective? [b]c)[/b] Given two natural numbers $ n,m, $ create two bijective functions: $$ \phi : f_m (\mathbb{R} )\cap [0,\infty )\longrightarrow f_n(\mathbb{R})\cap [0,\infty ) $$ $$ \psi : \left(\mathbb{R}\setminus f_m (\mathbb{R})\right)\cap [0,\infty )\longrightarrow\left(\mathbb{R}\setminus f_n (\mathbb{R})\right)\cap [0,\infty ) $$ [i]Cristinel Mortici[/i]

2012 Today's Calculation Of Integral, 791

Let $S$ be the domain in the coordinate plane determined by two inequalities: \[y\geq \frac 12x^2,\ \ \frac{x^2}{4}+4y^2\leq \frac 18.\] Denote by $V_1$ the volume of the solid by a rotation of $S$ about the $x$-axis and by $V_2$, by a rotation of $S$ about the $y$-axis. (1) Find the values of $V_1,\ V_2$. (2) Compare the size of the value of $\frac{V_2}{V_1}$ and 1.

2008 Canada National Olympiad, 2

Determine all functions $ f$ defined on the set of rational numbers that take rational values for which \[ f(2f(x) \plus{} f(y)) \equal{} 2x \plus{} y, \] for each $ x$ and $ y$.

2019 Iran MO (3rd Round), 2

$P(x)$ is a monoic polynomial with integer coefficients so that there exists monoic integer coefficients polynomials $p_1(x),p_2(x),\dots ,p_n(x)$ so that for any natural number $x$ there exist an index $j$ and a natural number $y$ so that $p_j(y)=P(x)$ and also $deg(p_j) \ge deg(P)$ for all $j$.Show that there exist an index $i$ and an integer $k$ so that $P(x)=p_i(x+k)$.

2000 Baltic Way, 20

For every positive integer $n$, let \[x_n=\frac{(2n+1)(2n+3)\cdots (4n-1)(4n+1)}{(2n)(2n+2)\cdots (4n-2)(4n)}\] Prove that $\frac{1}{4n}<x_n-\sqrt{2}<\frac{2}{n}$.

2005 Miklós Schweitzer, 7

Let $t\in R$. Prove that $\exists A:R \times R \to R$ such that A is a symmetric, biadditive, nonzero function and $A(tx,x)=0 \,\forall x\in R$ iff t is transcendental or (t is algebraic and t,-t are conjugates over $\mathbb{Q}$).

DMM Team Rounds, 2015

[b]p1.[/b] Let $U = \{-2, 0, 1\}$ and $N = \{1, 2, 3, 4, 5\}$. Let $f$ be a function that maps $U$ to $N$. For any $x \in U$, $x + f(x) + xf(x)$ is an odd number. How many $f$ satisfy the above statement? [b]p2.[/b] Around a circle are written all of the positive integers from $ 1$ to $n$, $n \ge 2$ in such a way that any two adjacent integers have at least one digit in common in their decimal expressions. Find the smallest $n$ for which this is possible. [b]p3.[/b] Michael loses things, especially his room key. If in a day of the week he has $n$ classes he loses his key with probability $n/5$. After he loses his key during the day he replaces it before he goes to sleep so the next day he will have a key. During the weekend(Saturday and Sunday) Michael studies all day and does not leave his room, therefore he does not lose his key. Given that on Monday he has 1 class, on Tuesday and Thursday he has $2$ classes and that on Wednesday and Friday he has $3$ classes, what is the probability that loses his key at least once during a week? [b]p4.[/b] Given two concentric circles one with radius $8$ and the other $5$. What is the probability that the distance between two randomly chosen points on the circles, one from each circle, is greater than $7$ ? [b]p5.[/b] We say that a positive integer $n$ is lucky if $n^2$ can be written as the sum of $n$ consecutive positive integers. Find the number of lucky numbers strictly less than $2015$. [b]p6.[/b] Let $A = \{3^x + 3^y + 3^z|x, y, z \ge 0, x, y, z \in Z, x < y < z\}$. Arrange the set $A$ in increasing order. Then what is the $50$th number? (Express the answer in the form $3^x + 3^y + 3^z$). [b]p7.[/b] Justin and Oscar found $2015$ sticks on the table. I know what you are thinking, that is very curious. They decided to play a game with them. The game is, each player in turn must remove from the table some sticks, provided that the player removes at least one stick and at most half of the sticks on the table. The player who leaves just one stick on the table loses the game. Justin goes first and he realizes he has a winning strategy. How many sticks does he have to take off to guarantee that he will win? [b]p8.[/b] Let $(x, y, z)$ with $x \ge y \ge z \ge 0$ be integers such that $\frac{x^3+y^3+z^3}{3} = xyz + 21$. Find $x$. [b]p9.[/b] Let $p < q < r < s$ be prime numbers such that $$1 - \frac{1}{p} -\frac{1}{q} -\frac{1}{r}- \frac{1}{s}= \frac{1}{pqrs}.$$ Find $p + q + r + s$. [b]p10.[/b] In ”island-land”, there are $10$ islands. Alex falls out of a plane onto one of the islands, with equal probability of landing on any island. That night, the Chocolate King visits Alex in his sleep and tells him that there is a mountain of chocolate on one of the islands, with equal probability of being on each island. However, Alex has become very fat from eating chocolate his whole life, so he can’t swim to any of the other islands. Luckily, there is a teleporter on each island. Each teleporter will teleport Alex to exactly one other teleporter (possibly itself) and each teleporter gets teleported to by exactly one teleporter. The configuration of the teleporters is chosen uniformly at random from all possible configurations of teleporters satisfying these criteria. What is the probability that Alex can get his chocolate? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2008 China Western Mathematical Olympiad, 1

Tags: algebra , induction
A sequence of real numbers $ \{a_{n}\}$ is defineds by $ a_{0}\neq 0,1$, $ a_1\equal{}1\minus{}a_0$,$ a_{n\plus{}1}\equal{}1\minus{}a_n(1\minus{}a_n)$, $ n\equal{}1,2,...$. Prove that for any positive integer $ n$, we have $ a_{0}a_{1}...a_{n}(\frac{1}{a_0}\plus{}\frac{1}{a_1}\plus{}...\plus{}\frac{1}{a_n})\equal{}1$

Mid-Michigan MO, Grades 5-6, 2013

[b]p1.[/b] The clock is $2$ hours $20$ minutes ahead of the correct time each week. The clock is set to the correct time at midnight Sunday to Monday. What time does this clock show at 6pm correct time on Thursday? [b]p2.[/b] Five cities $A,B,C,D$, and $E$ are located along the straight road in the alphabetical order. The sum of distances from $B$ to $A,C,D$ and $E$ is $20$ miles. The sum of distances from $C$ to the other four cities is $18$ miles. Find the distance between $B$ and $C$. [b]p3.[/b] Does there exist distinct digits $a, b, c$, and $d$ such that $\overline{abc}+\overline{c} = \overline{bda}$? Here $\overline{abc}$ means the three digit number with digits $a, b$, and $c$. [b]p4.[/b] Kuzya, Fyokla, Dunya, and Senya participated in a mathematical competition. Kuzya solved $8$ problems, more than anybody else. Senya solved $5$ problem, less than anybody else. Each problem was solved by exactly $3$ participants. How many problems were there? [b]p5.[/b] Mr Mouse got to the cellar where he noticed three heads of cheese weighing $50$ grams, $80$ grams, and $120$ grams. Mr. Mouse is allowed to cut simultaneously $10$ grams from any two of the heads and eat them. He can repeat this procedure as many times as he wants. Can he make the weights of all three pieces equal? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1964 Dutch Mathematical Olympiad, 4

The function $ƒ$ is defined at $[0,1]$, and $f\{f(x)\} = ƒ(x)$. $\exists _{c\in [0,1]} \left[f(c) =\frac12 \right]$ Determine $f\left(\frac12 \right).$ $\forall _{t\in [0,1]}\exists _{s\in [0,1]}[f(s) = t]$. Determine $f$. Prove that the function $g$, with $g(x) = x$,$0 \le x \le k$, $g(x) = k$, $k \le x \le 1$ satisfies the relation $g\{g(x)\} = g(x)$.

EMCC Guts Rounds, 2015

[u]Round 1[/u] [b]p1.[/b] Alec rated the movie Frozen $1$ out of $5$ stars. At least how many ratings of $5$ out of $5$ stars does Eric need to collect to make the average rating for Frozen greater than or equal to $4$ out of $5$ stars? [b]p2.[/b] Bessie shuffles a standard $52$-card deck and draws five cards without replacement. She notices that all five of the cards she drew are red. If she draws one more card from the remaining cards in the deck, what is the probability that she draws another red card? [b]p3.[/b] Find the value of $121 \cdot 1020304030201$. [u]Round 2[/u] [b]p4.[/b] Find the smallest positive integer $c$ for which there exist positive integers $a$ and $b$ such that $a \ne b$ and $a^2 + b^2 = c$ [b]p5.[/b] A semicircle with diameter $AB$ is constructed on the outside of rectangle $ABCD$ and has an arc length equal to the length of $BC$. Compute the ratio of the area of the rectangle to the area of the semicircle. [b]p6.[/b] There are $10$ monsters, each with $6$ units of health. On turn $n$, you can attack one monster, reducing its health by $n$ units. If a monster's health drops to $0$ or below, the monster dies. What is the minimum number of turns necessary to kill all of the monsters? [u]Round 3[/u] [b]p7.[/b] It is known that $2$ students make up $5\%$ of a class, when rounded to the nearest percent. Determine the number of possible class sizes. [b]p8.[/b] At $17:10$, Totoro hopped onto a train traveling from Tianjin to Urumuqi. At $14:10$ that same day, a train departed Urumuqi for Tianjin, traveling at the same speed as the $17:10$ train. If the duration of a one-way trip is $13$ hours, then how many hours after the two trains pass each other would Totoro reach Urumuqi? [b]p9.[/b] Chad has $100$ cookies that he wants to distribute among four friends. Two of them, Jeff and Qiao, are rivals; neither wants the other to receive more cookies than they do. The other two, Jim and Townley, don't care about how many cookies they receive. In how many ways can Chad distribute all $100$ cookies to his four friends so that everyone is satisfied? (Some of his four friends may receive zero cookies.) [u]Round 4[/u] [b]p10.[/b] Compute the smallest positive integer with at least four two-digit positive divisors. [b]p11.[/b] Let $ABCD$ be a trapezoid such that $AB$ is parallel to $CD$, $BC = 10$ and $AD = 18$. Given that the two circles with diameters $BC$ and $AD$ are tangent, find the perimeter of $ABCD$. [b]p12.[/b] How many length ten strings consisting of only $A$s and Bs contain neither "$BAB$" nor "$BBB$" as a substring? PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2934037p26256063]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 Kyiv City MO Round 2, Problem 4

Prime $p>2$ and a polynomial $Q$ with integer coefficients are such that there are no integers $1 \le i < j \le p-1$ for which $(Q(j)-Q(i))(jQ(j)-iQ(i))$ is divisible by $p$. What is the smallest possible degree of $Q$? [i](Proposed by Anton Trygub)[/i]

1971 IMO Shortlist, 9

Let $T_k = k - 1$ for $k = 1, 2, 3,4$ and \[T_{2k-1} = T_{2k-2} + 2^{k-2}, T_{2k} = T_{2k-5} + 2^k \qquad (k \geq 3).\] Show that for all $k$, \[1 + T_{2n-1} = \left[ \frac{12}{7}2^{n-1} \right] \quad \text{and} \quad 1 + T_{2n} = \left[ \frac{17}{7}2^{n-1} \right],\] where $[x]$ denotes the greatest integer not exceeding $x.$

2015 India PRMO, 17

Tags: algebra
$17.$ Let $a,$ $b,$ and $c.$ be such that $a+b+c=0$ and $$P=\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ca}+\frac{c^2}{2c^2+ab}$$ is defined. What is the value of $P ?$

1969 Leningrad Math Olympiad, grade 7

[b]7.1 / 6.1[/b] There are $8$ rooks on the chessboard such that no two of them they don't hit each other. Prove that the black squares contain an even number of rooks. [b]7.2[/b] The sides of triangle $ABC$ are extended as shown in the figure. At this $AA' = 3 AB$,, $BB' = 5BC$ , $CC'= 8 CA$. How many times is the area of the triangle $ABC$ less than the area of the triangle $A'B'C' $? [img]https://cdn.artofproblemsolving.com/attachments/9/f/06795292291cd234bf2469e8311f55897552f6.png[/img] [url=https://artofproblemsolving.com/community/c893771h1860178p12579333]7.3[/url] Prove the equality $$\frac{2}{x^2-1}+\frac{4}{x^2-4} +\frac{6}{x^2-9}+...+\frac{20}{x^2-100} =\frac{11}{(x-1)(x+10)}+\frac{11}{(x-2)(x+9)}+...+\frac{11}{(x-10)(x+1)}$$ [url=https://artofproblemsolving.com/community/c893771h1861966p12597273]7.4* / 8.4 *[/url] (asterisk problems in separate posts) [b]7.5 [/b]. The collective farm consists of $4$ villages located in the peaks of square with side $10$ km. It has the means to conctruct 28 kilometers of roads . Can a collective farm build such a road system so that was it possible to get from any village to any other? [b]7.6 / 6.6[/b] Two brilliant mathematicians were told in natural terms number and were told that these numbers differ by one. After that they take turns asking each other the same question: “Do you know my number?" Prove that sooner or later one of them will answer positively. PS. You should use hide for answers.Collected [url=https://artofproblemsolving.com/community/c3988085_1969_leningrad_math_olympiad]here[/url].

2018 ELMO Shortlist, 1

Let $f:\mathbb{R}\to\mathbb{R}$ be a bijective function. Does there always exist an infinite number of functions $g:\mathbb{R}\to\mathbb{R}$ such that $f(g(x))=g(f(x))$ for all $x\in\mathbb{R}$? [i]Proposed by Daniel Liu[/i]

2010 Bundeswettbewerb Mathematik, 1

Let $a, b, c$ be the side lengths of an non-degenerate triangle with $a \le b \le c$. With $t (a, b, c)$ denote the minimum of the quotients $\frac{b}{a}$ and $\frac{c}{b}$ . Find all values that $t (a, b, c)$ can take.