This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2010 Harvard-MIT Mathematics Tournament, 10

Let $p(x)$ and $q(x)$ be two cubic polynomials such that $p(0)=-24$, $q(0)=30$, and \[p(q(x))=q(p(x))\] for all real numbers $x$. Find the ordered pair $(p(3),q(6))$.

1959 AMC 12/AHSME, 9

A farmer divides his herd of $n$ cows among his four sons so that one son gets one-half the herd, a second son, one-fourth, a third son, one-fifth, and the fourth son, 7 cows. Then $n$ is: $ \textbf{(A)}\ 80 \qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 140\qquad\textbf{(D)}\ 180\qquad\textbf{(E)}\ 240 $

2014 Bosnia And Herzegovina - Regional Olympiad, 1

Find all real solutions of the equation: $$x=\frac{2z^2}{1+z^2}$$ $$y=\frac{2x^2}{1+x^2}$$ $$z=\frac{2y^2}{1+y^2}$$

2015 Korea Junior Math Olympiad, 7

For a polynomial $f(x)$ with integer coefficients and degree no less than $1$, prove that there are infinitely many primes $p$ which satisfies the following. There exists an integer $n$ such that $f(n) \not= 0$ and $|f(n)|$ is a multiple of $p$.

1969 Canada National Olympiad, 8

Let $f$ be a function with the following properties: 1) $f(n)$ is defined for every positive integer $n$; 2) $f(n)$ is an integer; 3) $f(2)=2$; 4) $f(mn)=f(m)f(n)$ for all $m$ and $n$; 5) $f(m)>f(n)$ whenever $m>n$. Prove that $f(n)=n$.

2008 Korea - Final Round, 2

Find all integer polynomials $f$ such that there are infinitely many pairs of relatively prime natural numbers $(a,b)$ so that $a+b \mid f(a)+f(b)$.

2007 QEDMO 5th, 6

Tags: algebra , function
Find all functions $ f: \mathbb{R}\to\mathbb{R}$ that satisfy the equation: $ f\left(\left(f\left(x\right)\right)^2 \plus{} f\left(y\right)\right) \equal{} xf\left(x\right) \plus{} y$ for any two real numbers $ x$ and $ y$.

1970 All Soviet Union Mathematical Olympiad, 130

The product of three positive numbers equals to one, their sum is strictly greater than the sum of the inverse numbers. Prove that one and only one of them is greater than one.

1981 AMC 12/AHSME, 14

In a geometric sequence of real numbers, the sum of the first two terms is 7, and the sum of the first 6 terms is 91. The sum of the first 4 terms is $\text{(A)}\ 28 \qquad \text{(B)}\ 32 \qquad \text{(C)}\ 35 \qquad \text{(D)}\ 49 \qquad \text{(E)}\ 84$

2012 Serbia Team Selection Test, 1

Let $P(x)$ be a polynomial of degree $2012$ with real coefficients satisfying the condition \[P(a)^3 + P(b)^3 + P(c)^3 \geq 3P(a)P(b)P(c),\] for all real numbers $a,b,c$ such that $a+b+c=0$. Is it possible for $P(x)$ to have exactly $2012$ distinct real roots?

2022 BMT, 10

Each box in the equation $$\square \times \square \times \square - \square \times \square \times \square = 9$$ is filled in with a different number in the list 2, $3, 4, 5, 6, 7, 8$ so that the equation is true. Which number in the list is not used to fill in a box?

2007 District Olympiad, 1

Let be three real numbers $ a,b,c, $ all in the interval $ (0,\infty ) $ or all in the interval $ (0,1). $ Prove the following inequality: $$ \sum_{\text{cyc}}\log_a bc\ge 4\cdot\sum_{\text{cyc}} \log_{ab} c . $$

2003 Moldova National Olympiad, 12.2

For every natural number $n\geq{2}$ consider the following affirmation $P_n$: "Consider a polynomial $P(X)$ (of degree $n$) with real coefficients. If its derivative $P'(X)$ has $n-1$ distinct real roots, then there is a real number $C$ such that the equation $P(x)=C$ has $n$ real,distinct roots." Are $P_4$ and $P_5$ both true? Justify your answer.

1966 IMO Longlists, 9

Find $x$ such that trigonometric \[\frac{\sin 3x \cos (60^\circ -4x)+1}{\sin(60^\circ - 7x) - \cos(30^\circ + x) + m}=0\] where $m$ is a fixed real number.

1987 Romania Team Selection Test, 4

Let $ P(X) \equal{} a_{n}X^{n} \plus{} a_{n \minus{} 1}X^{n \minus{} 1} \plus{} \ldots \plus{} a_{1}X \plus{} a_{0}$ be a real polynomial of degree $ n$. Suppose $ n$ is an even number and: a) $ a_{0} > 0$, $ a_{n} > 0$; b) $ a_{1}^{2} \plus{} a_{2}^{2} \plus{} \ldots \plus{} a_{n \minus{} 1}^{2}\leq\frac {4\min(a_{0}^{2} , a_{n}^{2})}{n \minus{} 1}$. Prove that $ P(x)\geq 0$ for all real values $ x$. [i]Laurentiu Panaitopol[/i]

2016 EGMO, 1

Let $n$ be an odd positive integer, and let $x_1,x_2,\cdots ,x_n$ be non-negative real numbers. Show that \[ \min_{i=1,\ldots,n} (x_i^2+x_{i+1}^2) \leq \max_{j=1,\ldots,n} (2x_jx_{j+1}) \]where $x_{n+1}=x_1$.

2018 NZMOC Camp Selection Problems, 5

Let $a, b$ and $c$ be positive real numbers satisfying $$\frac{1}{a + 2019}+\frac{1}{b + 2019}+\frac{1}{c + 2019}=\frac{1}{2019}.$$ Prove that $abc \ge 4038^3$.

2021 Cyprus JBMO TST, 2

Let $x,y$ be real numbers with $x \geqslant \sqrt{2021}$ such that \[ \sqrt[3]{x+\sqrt{2021}}+\sqrt[3]{x-\sqrt{2021}} = \sqrt[3]{y}\] Determine the set of all possible values of $y/x$.

1984 Tournament Of Towns, (069) T3

Find all solutions of $2^n + 7 = x^2$ in which n and x are both integers . Prove that there are no other solutions.

2023-24 IOQM India, 12

Let $P(x)=x^3+ax^2+bx+c$ be a polynomial where $a,b,c$ are integers and $c$ is odd. Let $p_{i}$ be the value of $P(x)$ at $x=i$. Given that $p_{1}^3+p_{2}^{3}+p_{3}^{3}=3p_{1}p_{2}p_{3}$, find the value of $p_{2}+2p_{1}-3p_{0}.$

2010 Germany Team Selection Test, 3

Find all functions $f: \mathbb{R} \to \mathbb{R}$ such that \[f(x)f(y) = (x+y+1)^2 \cdot f \left( \frac{xy-1}{x+y+1} \right)\] $\forall x,y \in \mathbb{R}$ with $x+y+1 \neq 0$ and $f(x) > 1$ $\forall x > 0.$

2017 Brazil Team Selection Test, 4

Find all functions $f:(0,\infty)\rightarrow (0,\infty)$ such that for any $x,y\in (0,\infty)$, $$xf(x^2)f(f(y)) + f(yf(x)) = f(xy) \left(f(f(x^2)) + f(f(y^2))\right).$$

1950 Miklós Schweitzer, 1

Tags: algebra
Let $ \{k_n\}_{n \equal{} 1}^{\infty}$ be a sequence of real numbers having the properties $ k_1 > 1$ and $ k_1 \plus{} k_2 \plus{} \cdots \plus{} k_n < 2k_n$ for $ n \equal{} 1,2,...$. Prove that there exists a number $ q > 1$ such that $ k_n > q^n$ for every positive integer $ n$.

DMM Team Rounds, 2018

[b]p1. [/b] If $f(x) = 3x - 1$, what is $f^6(2) = (f \circ f \circ f \circ f \circ f \circ f)(2)$? [b]p2.[/b] A frog starts at the origin of the $(x, y)$ plane and wants to go to $(6, 6)$. It can either jump to the right one unit or jump up one unit. How many ways are there for the frog to jump from the origin to $(6, 6)$ without passing through point $(2, 3)$? [b]p3.[/b] Alfred, Bob, and Carl plan to meet at a café between noon and $2$ pm. Alfred and Bob will arrive at a random time between noon and $2$ pm. They will wait for $20$ minutes or until $2$ pm for all $3$ people to show up after which they will leave. Carl will arrive at the café at noon and leave at $1:30$ pm. What is the probability that all three will meet together? [b]p4.[/b] Let triangle $ABC$ be isosceles with $AB = AC$. Let $BD$ be the altitude from $ B$ to $AC$, $E$ be the midpoint of $AB$, and $AF$ be the altitude from $ A$ to $BC$. If $AF = 8$ and the area of triangle $ACE$ is $ 8$, find the length of $CD$. [b]p5.[/b] Find the sum of the unique prime factors of $(2018^2 - 121) \cdot (2018^2 - 9)$. [b]p6.[/b] Compute the remainder when $3^{102} + 3^{101} + ... + 3^0$ is divided by $101$. [b]p7.[/b] Take regular heptagon $DUKMATH$ with side length $ 3$. Find the value of $$\frac{1}{DK}+\frac{1}{DM}.$$ [b]p8.[/b] RJ’s favorite number is a positive integer less than $1000$. It has final digit of $3$ when written in base $5$ and final digit $4$ when written in base $6$. How many guesses do you need to be certain that you can guess RJ’s favorite number? [b]p9.[/b] Let $f(a, b) = \frac{a^2+b^2}{ab-1}$ , where $a$ and $b$ are positive integers, $ab \ne 1$. Let $x$ be the maximum positive integer value of $f$, and let $y$ be the minimum positive integer value of f. What is $x - y$ ? [b]p10.[/b] Haoyang has a circular cylinder container with height $50$ and radius $5$ that contains $5$ tennis balls, each with outer-radius $5$ and thickness $1$. Since Haoyang is very smart, he figures out that he can fit in more balls if he cuts each of the balls in half, then puts them in the container, so he is ”stacking” the halves. How many balls would he have to cut up to fill up the container? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2012 Grand Duchy of Lithuania, 1

Find all functions $g : R \to R$, for which there exists a strictly increasing function $f : R \to R$ such that $f(x + y) = f(x)g(y) + f(y)$.