This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2018 Brazil Undergrad MO, 2

Let $ f, g: \mathbb {R} \to \mathbb {R} $ function such that $ f (x + g (y)) = - x + y + 1 $ for each pair of real numbers $ x $ e $ y $. What is the value of $ g (x + f (y) $?

2015 Indonesia MO Shortlist, A2

Suppose $a$ real number so that there is a non-constant polynomial $P (x)$ such that $\frac{P(x+1)-P(x)}{P(x+\pi)}= \frac{a}{x+\pi}$ for each real number $x$, with $x+\pi \ne 0$ and $P(x+\pi)\ne 0$. Show that $a$ is a natural number.

2016 Indonesia Juniors, day 1

p1. Find all real numbers that satisfy the equation $$(1 + x^2 + x^4 + .... + x^{2014})(x^{2016} + 1) = 2016x^{2015}$$ p2. Let $A$ be an integer and $A = 2 + 20 + 201 + 2016 + 20162 + ... + \underbrace{20162016...2016}_{40\,\, digits}$ Find the last seven digits of $A$, in order from millions to units. p3. In triangle $ABC$, points $P$ and $Q$ are on sides of $BC$ so that the length of $BP$ is equal to $CQ$, $\angle BAP = \angle CAQ$ and $\angle APB$ is acute. Is triangle $ABC$ isosceles? Write down your reasons. p4. Ayu is about to open the suitcase but she forgets the key. The suitcase code consists of nine digits, namely four $0$s (zero) and five $1$s. Ayu remembers that no four consecutive numbers are the same. How many codes might have to try to make sure the suitcase is open? p5. Fulan keeps $100$ turkeys with the weight of the $i$-th turkey, being $x_i$ for $i\in\{1, 2, 3, ... , 100\}$. The weight of the $i$-th turkey in grams is assumed to follow the function $x_i(t) = S_it + 200 - i$ where $t$ represents the time in days and $S_i$ is the $i$-th term of an arithmetic sequence where the first term is a positive number $a$ with a difference of $b =\frac15$. It is known that the average data on the weight of the hundred turkeys at $t = a$ is $150.5$ grams. Calculate the median weight of the turkey at time $t = 20$ days.

1998 Bulgaria National Olympiad, 1

Tags: algebra
Let $a_1,a_2,\cdots ,a_n$ be real numbers, not all zero. Prove that the equation: \[\sqrt{1+a_1x}+\sqrt{1+a_2x}+\cdots +\sqrt{1+a_nx}=n\] has at most one real nonzero root.

1978 All Soviet Union Mathematical Olympiad, 267

Given $a_1, a_2, ... , a_n$. Define $$b_k = \frac{a_1 + a_2 + ... + a_k}{k}$$ for $1 \le k\le n.$ Let $$C = (a_1 - b_1)^2 + (a_2 - b_2)^2 + ... + (a_n - b_n)^2, D = (a_1 - b_n)^2 + (a_2 - b_n)^2 + ... + (a_n - b_n)^2$$ Prove that $C \le D \le 2C$.

1977 AMC 12/AHSME, 28

Let $g(x)=x^5+x^4+x^3+x^2+x+1$. What is the remainder when the polynomial $g(x^{12})$ is divided by the polynomial $g(x)$? $\textbf{(A) }6\qquad\textbf{(B) }5-x\qquad\textbf{(C) }4-x+x^2\qquad$ $\textbf{(D) }3-x+x^2-x^3\qquad \textbf{(E) }2-x+x^2-x^3+x^4$

2025 Azerbaijan Junior NMO, 5

For positive real numbers $x;y;z$ satisfying $0<x,y,z<2$, find the biggest value the following equation could acquire: $$(2x-yz)(2y-zx)(2z-xy)$$

2017 Harvard-MIT Mathematics Tournament, 25

Tags: algebra
Find all real numbers $x$ satisfying the equation $x^3 - 8 = 16 \sqrt[3]{x + 1}$.

2005 China Team Selection Test, 3

Let $a,b,c,d >0$ and $abcd=1$. Prove that: \[ \frac{1}{(1+a)^2}+\frac{1}{(1+b)^2}+\frac{1}{(1+c)^2}+\frac{1}{(1+d)^2} \geq 1 \]

1986 Tournament Of Towns, (127) 2

Does there exist a number $N$ so that there are $N - 1$ infinite arithmetic progressions with differences $2 , 3 , 4 ,..., N$ , and every natural number belongs to at least one of these progressions?

2018 Ramnicean Hope, 3

Consider two positive real numbers $ a,b $ and the function $ f:(0,\infty )\longrightarrow\left( \sqrt{ab} ,\frac{a+b}{2} \right) $ defined as $ f(x)=-x+\sqrt{x^2+(a+b)x+ab}. $ Prove that it's bijective. [i]D.M. Bătineți-Giurgiu[/i] and [i]Neculai Stanciu[/i]

2005 Baltic Way, 3

Tags: algebra
Consider the sequence $\{a_k\}_{k \geq 1}$ defined by $a_1 = 1$, $a_2 = \frac{1}{2}$ and \[ a_{k + 2} = a_k + \frac{1}{2}a_{k + 1} + \frac{1}{4a_ka_{k + 1}}\ \textrm{for}\ k \geq 1. \] Prove that \[ \frac{1}{a_1a_3} + \frac{1}{a_2a_4} + \frac{1}{a_3a_5} + \cdots + \frac{1}{a_{98}a_{100}} < 4. \]

2009 Rioplatense Mathematical Olympiad, Level 3, 1

Tags: domain , function , algebra
Find all functions $f:\mathbb{R}\to\mathbb{R}$ such that \[f(xy)=\max\{f(x+y),f(x) f(y)\} \] for all real numbers $x$ and $y$.

2009 USAMTS Problems, 2

Let $a, b, c, d$ be four real numbers such that \begin{align*}a + b + c + d &= 8, \\ ab + ac + ad + bc + bd + cd &= 12.\end{align*} Find the greatest possible value of $d$.

1999 Putnam, 3

Let $A=\{(x,y): 0\le x,y < 1\}.$ For $(x,y)\in A,$ let \[S(x,y)=\sum_{\frac12\le\frac mn\le2}x^my^n,\] where the sum ranges over all pairs $(m,n)$ of positive integers satisfying the indicated inequalities. Evaluate \[\lim_{(x,y)\to(1,1),(x,y)\in A}(1-xy^2)(1-x^2y)S(x,y).\]

1981 IMO, 3

The function $f(x,y)$ satisfies: $f(0,y)=y+1, f(x+1,0) = f(x,1), f(x+1,y+1)=f(x,f(x+1,y))$ for all non-negative integers $x,y$. Find $f(4,1981)$.

2016 Auckland Mathematical Olympiad, 3

Tags: algebra
In two weeks three cows eat all the grass on two hectares of land, together with all the grass that regrows there during the two weeks. In four weeks, two cows eat all the grass on two hectares of land, together with all the grass that regrows there during the four weeks. How many cows will eat all the grass on six hectares of land in six weeks, together with all the grass that regrows there over the six weeks? (Assume: $\bullet$ the quantity of grass on each hectare is the same when the cows begin to graze, $\bullet$ the rate of growth of the grass is uniform during the time of grazing, $\bullet$ the cows eat the same amount of grass each week.)

2018 China Second Round Olympiad, 1

Tags: algebra
Let $a,b \in \mathbb R,f(x)=ax+b+\frac{9}{x}.$ Prove that there exists $x_0 \in \left[1,9 \right],$ such that $|f(x_0)| \ge 2.$

1977 Polish MO Finals, 3

Consider the set $A = \{0, 1, 2, . . . , 2^{2n} - 1\}$. The function $f : A \rightarrow A$ is given by: $f(x_0 + 2x_1 + 2^2x_2 + ... + 2^{2n-1}x_{2n-1})=$$(1 - x_0) + 2x_1 + 2^2(1 - x_2) + 2^3x_3 + ... + 2^{2n-1}x_{2n-1}$ for every $0-1$ sequence $(x_0, x_1, . . . , x_{2n-1})$. Show that if $a_1, a_2, . . . , a_9$ are consecutive terms of an arithmetic progression, then the sequence $f(a_1), f(a_2), . . . , f(a_9)$ is not increasing.

2020 AIME Problems, 14

Tags: algebra
For real number $x$ let $\lfloor x\rfloor$ be the greatest integer less than or equal to $x$, and define $\{x\}=x-\lfloor x\rfloor$ to be the fractional part of $x$. For example, $\{3\}=0$ and $\{4.56\}=0.56$. Define $f(x)=x\{x\}$, and let $N$ be the number of real-valued solutions to the equation $f(f(f(x)))=17$ for $0\leq x\leq 2020$. Find the remainder when $N$ is divided by $1000$.

2010 Contests, 4

The sequence of Fibonnaci's numbers if defined from the two first digits $f_1=f_2=1$ and the formula $f_{n+2}=f_{n+1}+f_n$, $\forall n \in N$. [b](a)[/b] Prove that $f_{2010} $ is divisible by $10$. [b](b)[/b] Is $f_{1005}$ divisible by $4$? Albanian National Mathematical Olympiad 2010---12 GRADE Question 4.

1988 IMO Longlists, 42

Show that the solution set of the inequality \[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4} \] is a union of disjoint intervals, the sum of whose length is 1988.

2017 Mathematical Talent Reward Programme, SAQ: P 5

Let $\mathbb{N}$ be the set of all natural numbers. Let $f:\mathbb{N} \to \mathbb{N}$ be a bijective function. Show that there exists three numbers $a$, $b$, $c$ in arithmatic progression such that $f(a)<f(b)<f(c)$

2012 Bosnia And Herzegovina - Regional Olympiad, 1

Tags: value , identity , algebra
Find all possible values of $$\frac{1}{a}\left(\frac{1}{b}+\frac{1}{c}+\frac{1}{b+c}\right)+\frac{1}{b}\left(\frac{1}{c}+\frac{1}{a}+\frac{1}{c+a}\right)+\frac{1}{c}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{a+b}\right)-\frac{1}{a+b+c}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)+\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}$$ where $a$, $b$ and $c$ are positive real numbers such that $ab+bc+ca=abc$

VMEO I 2004, 5

Find all the functions $f:R \to R$ satisfying $$(x + y)(f (x)-f (y)) = f (x^2) - f (y^2),\, \forall x, y \in R$$