Found problems: 15925
2002 Moldova Team Selection Test, 1
Prove that for every positive integer n, there exists a polynomial p(x) with integer coefficients such that p(1), p(2),..., p(n-1), p(n) are distinct powers of 2.
2007 Nicolae Păun, 1
Let be nine nonzero decimal digits $ a_1,a_2,a_3,b_1,b_2,b_3,c_1,c_2,c_3 $ chosen such that the polynom
$$ \left( 100a_1+10a_2+a_3 \right) X^2 +\left( 100b_1+10b_2+b_3 \right) X +100c_1+10c_2+c_3 $$
admits at least a real solution.
Prove that at least one of the polynoms $ a_iX^2+b_iX+c_i\quad (i\in\{1,2,3\}) $ admits at least a real solution.
[i]Nicolae Mușuroia[/i]
2017 India PRMO, 12
In a class, the total numbers of boys and girls are in the ratio $4 : 3$. On one day it was found that $8$ boys and $14$ girls were absent from the class, and that the number of boys was the square of the number of girls. What is the total number of students in the class?
1975 Canada National Olympiad, 4
For a positive number such as 3.27, 3 is referred to as the integral part of the number and .27 as the decimal part. Find a positive number such that its decimal part, its integral part, and the number itself form a geometric progression.
2019 India IMO Training Camp, P1
Let $\mathbb{Q}_{>0}$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}_{>0}\to \mathbb{Q}_{>0}$ satisfying $$f(x^2f(y)^2)=f(x)^2f(y)$$ for all $x,y\in\mathbb{Q}_{>0}$
BIMO 2022, 1
Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that for all real numbers $x,y$, we have $$f(xf(x)+2y)=f(x)^2+x+2f(y)$$
1998 Italy TST, 1
A real number $\alpha$ is given. Find all functions $f : R^+ \to R^+$ satisfying
$\alpha x^2f\left(\frac{1}{x}\right) +f(x) =\frac{x}{x+1}$ for all $x > 0$.
III Soros Olympiad 1996 - 97 (Russia), 10.2
It is known that the equation $x^3 + px^2 + q = 0$ where $q$ is non-zero, has three different integer roots, the absolute values of two of which are prime numbers. Find the roots of this equation.
2019 MOAA, Accuracy
[b]p1.[/b] Farmer John wants to bring some cows to a pasture with grass that grows at a constant rate. Initially, the pasture has some nonzero amount of grass and it will stop growing if there is no grass left. The pasture sustains $100$ cows for ten days. The pasture can also sustain $100$ cows for five days, and then $120$ cows for three more days. If cows eat at a constant rate, fund the maximum number of cows Farmer John can bring to the pasture so that they can be sustained indefinitely.
[b]p2.[/b] Sam is learning basic arithmetic. He may place either the operation $+$ or $-$ in each of the blank spots between the numbers below: $$5\,\, \_ \,\, 8\,\, \_ \,\,9\,\, \_ \,\,7\,\,\_ \,\,2\,\,\_ \,\,3$$ In how many ways can he place the operations so the result is divisible by $3$?
[b]p3.[/b] Will loves the color blue, but he despises the color red. In the $5\times 6$ rectangular grid below, how many rectangles are there containing at most one red square and with sides contained in the gridlines?
[img]https://cdn.artofproblemsolving.com/attachments/1/7/7ce55bdc9e05c7c514dddc7f8194f3031b93c4.png[/img]
[b]p4.[/b] Let $r_1, r_2, r_3$ be the three roots of a cubic polynomial $P(x)$. Suppose that $$\frac{P(2) + P(-2)}{P(0)}= 200.$$ If $\frac{1}{r_1r_2}+ \frac{1}{r_2r_3}+\frac{1}{r_3r_1}= \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, compute $m + n$.
[b]p5.[/b] Consider a rectangle $ABCD$ with $AB = 3$ and $BC = 1$. Let $O$ be the intersection of diagonals $AC$ and $BD$. Suppose that the circumcircle of $ \vartriangle ADO$ intersects line $AB$ again at $E \ne A$. Then, the length $BE$ can be written as $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Find $m + n$.
[b]p6.[/b] Let $ABCD$ be a square with side length $100$ and $M$ be the midpoint of side $AB$. The circle with center $M$ and radius $50$ intersects the circle with center $D$ and radius $100$ at point $E$. $CE$ intersects $AB$ at $F$. If $AF = \frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$.
[b]p7.[/b] How many pairs of real numbers $(x, y)$, with $0 < x, y < 1$ satisfy the property that both $3x + 5y$ and $5x + 2y$ are integers?
[b]p8.[/b] Sebastian is coloring a circular spinner with $4$ congruent sections. He randomly chooses one of four colors for each of the sections. If two or more adjacent sections have the same color, he fuses them and considers them as one section. (Sections meeting at only one point are not adjacent.) Suppose that the expected number of sections in the final colored spinner is equal to $\frac{m}{n}$ for relatively prime positive integers $m$ and $n$. Compute $m + n$.
[b]p9.[/b] Let $ABC$ be a triangle and $D$ be a point on the extension of segment $BC$ past $C$. Let the line through $A$ perpendicular to $BC$ be $\ell$. The line through $B$ perpendicular to $AD$ and the line through $C$ perpendicular to $AD$ intersect $\ell$ at $H_1$ and $H_2$, respectively. If $AB = 13$, $BC = 14$, $CA = 15$, and $H_1H_2 = 1001$, find $CD$.
[b]p10.[/b] Find the sum of all positive integers $k$ such that
$$\frac21 -\frac{3}{2 \times 1}+\frac{4}{3\times 2\times 1} + ...+ (-1)^{k+1} \frac{k+1}{k\times (k - 1)\times ... \times 2\times 1} \ge 1 + \frac{1}{700^3}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2003 China Team Selection Test, 2
Find all functions $f,g$:$R \to R$ such that $f(x+yg(x))=g(x)+xf(y)$ for $x,y \in R$.
2019 Baltic Way, 5
The $2m$ numbers
$$1\cdot 2, 2\cdot 3, 3\cdot 4,\hdots,2m(2m+1)$$
are written on a blackboard, where $m\geq 2$ is an integer. A [i]move[/i] consists of choosing three numbers $a, b, c$, erasing them from the board and writing the single number
$$\frac{abc}{ab+bc+ca}$$
After $m-1$ such moves, only two numbers will remain on the blackboard. Supposing one of these is $\tfrac{4}{3}$, show that the other is larger than $4$.
2000 All-Russian Olympiad Regional Round, 11.3
Sequence of real numbers $a_1, a_2, . . . , a_{2000}$ is such that for any natural number $n$, $1\le n \le 2000$, the equality $$a^3_1+ a^3_2+... + a^3_n = (a_1 + a_2 +...+ a_n)^2.$$ Prove that all terms of this sequence are integers.
1990 Swedish Mathematical Competition, 3
Find all $a, b$ such that $\sin x + \sin a\ge b \cos x$ for all $x$.
LMT Speed Rounds, 21
Let $(a_1,a_2,a_3,a_4,a_5)$ be a random permutation of the integers from $1$ to $5$ inclusive. Find the expected value of $$\sum^5_{i=1} |a_i -i | = |a_1 -1|+|a_2 -2|+|a_3 -3|+|a_4 -4|+|a_5 -5|.$$
[i]Proposed by Muztaba Syed[/i]
1982 Czech and Slovak Olympiad III A, 6
Let $n,k$ be given natural numbers. Determine all ordered n-tuples of non-negative real numbers $(x_1,x_2,...,x_n)$ that satisfy the system of equations
$$x_1^k+x_2^k+...+x_n^k=1$$
$$(1+x_1)(1+x_2)...(1+x_n)=2$$
1957 Miklós Schweitzer, 9
[b]9.[/b] Find all pairs of linear polynomials $f(x)$, $g(x)$ with integer coefficients for which there exist two polynomials $u(x)$, $v(x)$ with integer coefficients such that $f(x)u(x)+g(x)v(x)=1$. [b](A. 8)[/b]
1922 Eotvos Mathematical Competition, 2
Prove that $$x^4 + 2x^2 + 2x + 2$$ is not the product of two polynomials $x^2 + ax + b$ and $x^2 + cx + d$ in which $a$, $b$, $c$, $d$ are integers.
2023 China Second Round, 1
We define a complex number $z=9+10i$
please find the maximum of a positive integer $n$ which satisfies $|z^n|\leq2023$
1987 AMC 12/AHSME, 1
$(1+x^2)(1-x^3)$ equals
$ \text{(A)}\ 1 - x^5\qquad\text{(B)}\ 1 - x^6\qquad\text{(C)}\ 1+ x^2 -x^3\qquad \\ \text{(D)}\ 1+x^2-x^3-x^5\qquad \text{(E)}\ 1+x^2-x^3-x^6 $
2019 Brazil Team Selection Test, 2
Given any set $S$ of positive integers, show that at least one of the following two assertions holds:
(1) There exist distinct finite subsets $F$ and $G$ of $S$ such that $\sum_{x\in F}1/x=\sum_{x\in G}1/x$;
(2) There exists a positive rational number $r<1$ such that $\sum_{x\in F}1/x\neq r$ for all finite subsets $F$ of $S$.
2011 IMO Shortlist, 3
Determine all pairs $(f,g)$ of functions from the set of real numbers to itself that satisfy \[g(f(x+y)) = f(x) + (2x + y)g(y)\] for all real numbers $x$ and $y$.
[i]Proposed by Japan[/i]
2013 Thailand Mathematical Olympiad, 6
Determine all functions $f$ : $\mathbb R\to\mathbb R$ satisfying $(x^2+y^2)f(xy)=f(x)f(y)f(x^2+y^2)$ $\forall x,y\in\mathbb R$
2025 Malaysian APMO Camp Selection Test, 1
A sequence is defined as $a_1=2025$ and for all $n\ge 2$, $$a_n=\frac{a_{n-1}+1}{n}$$ Determine the smallest $k$ such that $\displaystyle a_k<\frac{1}{2025}$.
[i]Proposed by Ivan Chan Kai Chin[/i]
1988 IMO Shortlist, 7
Let $ a$ be the greatest positive root of the equation $ x^3 \minus{} 3 \cdot x^2 \plus{} 1 \equal{} 0.$ Show that $ \left[a^{1788} \right]$ and $ \left[a^{1988} \right]$ are both divisible by 17. Here $ [x]$ denotes the integer part of $ x.$
2023 South East Mathematical Olympiad, 2
For a non-empty finite complex number set $A$, define the "[i]Tao root[/i]" of $A$ as $\left|\sum_{z\in A} z \right|$. Given the integer $n\ge 3$, let the set $$U_n = \{\cos\frac{2k \pi}{n}+ i\sin\frac{2k \pi}{n}|k=0,1,...,n-1\}.$$Let $a_n$ be the number of non-empty subsets in which the [i]Tao root [/i] of $U_n$ is $0$ , $b_n$ is the number of non-empty subsets of $U_n$ whose [i]Tao root[/i] is $1$. Compare the sizes of $na_n$ and $2b_n$.