Found problems: 15925
1976 Chisinau City MO, 130
Prove that the function $f (x)$ satisfying the relation $|f (x) - f (y) | \le | x - y|^a$ for any real numbers $x, y$ and some number $a> 1$ is constant.
2014 International Zhautykov Olympiad, 2
Does there exist a function $f: \mathbb R \to \mathbb R $ satisfying the following conditions:
(i) for each real $y$ there is a real $x$ such that $f(x)=y$ , and
(ii) $f(f(x)) = (x - 1)f(x) + 2$ for all real $x$ ?
[i]Proposed by Igor I. Voronovich, Belarus[/i]
1989 IMO Longlists, 70
Given that \[ \frac{\cos(x) \plus{} \cos(y) \plus{} \cos(z)}{\cos(x\plus{}y\plus{}z)} \equal{} \frac{\sin(x)\plus{} \sin(y) \plus{} \sin(z)}{\sin(x \plus{} y \plus{} z)} \equal{} a,\] show that \[ \cos(y\plus{}z) \plus{} \cos(z\plus{}x) \plus{} \cos(x\plus{}y) \equal{} a.\]
2008 VJIMC, Problem 1
Find all functions $f:\mathbb Z\to\mathbb Z$ such that
$$19f(x)-17f(f(x))=2x$$for all $x\in\mathbb Z$.
2017 Korea National Olympiad, problem 7
Find all real numbers $c$ such that there exists a function $f: \mathbb{R}_{ \ge 0} \rightarrow \mathbb{R}$ which satisfies the following.
For all nonnegative reals $x, y$, $f(x+y^2) \ge cf(x)+y$.
Here $\mathbb{R}_{\ge 0}$ is the set of all nonnegative reals.
2008 Princeton University Math Competition, 8
Suppose that the roots of the quadratic $x^2 + ax + b$ are $\alpha$ and $\beta$. Then $\alpha^3$ and $\beta^3$ are the roots of some quadratic $x^2 + cx + d$. Find $c$ in terms of $a$ and $b$.
2011 Serbia National Math Olympiad, 1
Let $n \ge 2$ be integer. Let $a_0$, $a_1$, ... $a_n$ be sequence of positive reals such that:
$(a_{k-1}+a_k)(a_k+a_{k+1})=a_{k-1}-a_{k+1}$, for $k=1, 2, ..., n-1$.
Prove $a_n< \frac{1}{n-1}$.
2011 Moldova Team Selection Test, 1
Find all real numbers $x, y$ such that:
$y+3\sqrt{x+2}=\frac{23}2+y^2-\sqrt{49-16x}$
2017 Hong Kong TST, 6
Given infinite sequences $a_1,a_2,a_3,\cdots$ and $b_1,b_2,b_3,\cdots$ of real numbers satisfying $\displaystyle a_{n+1}+b_{n+1}=\frac{a_n+b_n}{2}$ and $\displaystyle a_{n+1}b_{n+1}=\sqrt{a_nb_n}$ for all $n\geq1$. Suppose $b_{2016}=1$ and $a_1>0$. Find all possible values of $a_1$
2006 Princeton University Math Competition, 3
Find all real solutions $(x,y)$ to the equation $y^4+2y^2+8x^2+16x^4 = 24xy-8$.
JOM 2015 Shortlist, A8
Let $ a_1,a_2, \cdots ,a_{2015} $ be $2015$-tuples of positive integers (not necessary distinct) and let $ k $ be a positive integers. Denote $\displaystyle f(i)=a_i+\frac{a_1a_2 \cdots a_{2015}}{a_i} $.
a) Prove that if $ k=2015^{2015} $, there exist $ a_1, a_2, \cdots , a_{2015} $ such that $ f(i)= k $ for all $1\le i\le 2015 $.\\
b) Find the maximum $k_0$ so that for $k\le k_0$, there are no $k$ such that there are at least $ 2 $ different $2015$-tuples which fulfill the above condition.
1997 German National Olympiad, 6a
Let us define $f$ and $g$ by $f(x) = x^5 +5x^4 +5x^3 +5x^2 +1$, $g(x) = x^5 +5x^4 +3x^3 -5x^2 -1$.
Determine all prime numbers $p$ such that, for at least one integer $x, 0 \le x < p-1$, both $f(x)$ and $g(x)$ are divisible by $p$. For each such $p$, find all $x$ with this property.
1995 Austrian-Polish Competition, 9
Prove that for all positive integers $n,m$ and all real numbers $x, y > 0$ the following inequality holds:
\[(n - 1)(m- 1)(x^{n+m} + y^{n+m}) + (n + m - 1)(x^ny^m + x^my^n)\\ \\ \ge
nm(x^{n+m-1}y + xy^{n+m-1}).\]
2016 Hanoi Open Mathematics Competitions, 9
Let $x, y,z$ satisfy the following inequalities $\begin{cases} | x + 2y - 3z| \le 6 \\
| x - 2y + 3z| \le 6 \\
| x - 2y - 3z| \le 6 \\
| x + 2y + 3z| \le 6 \end{cases}$
Determine the greatest value of $M = |x| + |y| + |z|$.
1936 Eotvos Mathematical Competition, 1
Prove that for all positive integers $n$,
$$\frac{1}{1 \cdot 2}+\frac{1}{3 \cdot 4}+ ...+ \frac{1}{(2n - 1)2n}=\frac{1}{n + 1}\frac{1}{n + 2}+ ... +\frac{1}{2n}$$
1998 Belarus Team Selection Test, 3
Let $ R_1,R_2, \ldots$ be the family of finite sequences of positive integers defined by the following rules: $ R_1 \equal{} (1),$ and if $ R_{n - 1} \equal{} (x_1, \ldots, x_s),$ then
\[ R_n \equal{} (1, 2, \ldots, x_1, 1, 2, \ldots, x_2, \ldots, 1, 2, \ldots, x_s, n).\]
For example, $ R_2 \equal{} (1, 2),$ $ R_3 \equal{} (1, 1, 2, 3),$ $ R_4 \equal{} (1, 1, 1, 2, 1, 2, 3, 4).$ Prove that if $ n > 1,$ then the $ k$th term from the left in $ R_n$ is equal to 1 if and only if the $ k$th term from the right in $ R_n$ is different from 1.
2009 Bosnia And Herzegovina - Regional Olympiad, 4
What is the minimal value of $\sqrt{2x+1}+\sqrt{3y+1}+\sqrt{4z+1}$, if $x$, $y$ and $z$ are nonnegative real numbers such that $x+y+z=4$
2012 Czech-Polish-Slovak Match, 2
Find all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying
\[f(x+f(y))-f(x)=(x+f(y))^4-x^4\]
for all $x,y \in \mathbb{R}$.
2022 Olympic Revenge, Problem 5
Prove that there exists a positive integer $x<5^{2022}$ such that \[\{\varphi\sqrt[3]{x}\}<\varphi^{-2022}.\]
2018 Saudi Arabia BMO TST, 2
Find all functions $f : R \to R$ such that $f( 2x^3 + f (y)) = y + 2x^2 f (x)$ for all real numbers $x, y$.
2019-2020 Fall SDPC, 3
Find all polynomials $P$ with integer coefficients such that for all positive integers $x,y$, $$\frac{P(x)-P(y)}{x^2+y^2}$$ evaluates to an integer (in particular, it can be zero).
1992 IMO Shortlist, 1
Prove that for any positive integer $ m$ there exist an infinite number of pairs of integers $ (x, y)$ such that
[i](i)[/i] $ x$ and $ y$ are relatively prime;
[i](ii)[/i] $ y$ divides $ x^2 \plus{} m$;
[i](iii)[/i] $ x$ divides $ y^2 \plus{} m.$
[i](iv)[/i] $ x \plus{} y \leq m \plus{} 1\minus{}$ (optional condition)
2005 Morocco TST, 3
The real numbers $a_1,a_2,...,a_{100}$ satisfy the relationship :
$a_1^2+ a_2^2 + \cdots +a_{100}^2 + ( a_1+a_2 + \cdots + a_{100})^2 = 101$
Prove that $|a_k| \leq 10$ for all $k \in \{1,2,...,100\}$
1994 Chile National Olympiad, 5
Let $x$ be a number such that $x +\frac{1}{x}=-1$. Determine the value of $x^{1994} +\frac{1}{x^{1994}}$.
2024-25 IOQM India, 24
Consider the set $F$ of all polynomials whose coefficients are in the set of $\{0,1\}$. Let $q(x) = x^3 + x +1$. The number of polynomials $p(x)$ in $F$ of degree $14$ such that the product $p(x)q(x)$ is also in $F$ is: