This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2017 Serbia Team Selection Test, 5

Let $n \geq 2$ be a positive integer and $\{x_i\}_{i=0}^n$ a sequence such that not all of its elements are zero and there is a positive constant $C_n$ for which: (i) $x_1+ \dots +x_n=0$, and (ii) for each $i$ either $x_i\leq x_{i+1}$ or $x_i\leq x_{i+1} + C_n x_{i+2}$ (all indexes are assumed modulo $n$). Prove that a) $C_n\geq 2$, and b) $C_n=2$ if and only $2 \mid n$.

2006 Indonesia Juniors, day 2

p1. Two integers $m$ and $n$ are said to be [i]coprime [/i] if there are integers $a$ and $ b$ such that $am + bn = 1$. Show that for each integer $p$, the pair of numbers formed by $21p + 4$ and $14p + 3$ are always coprime. p2. Two farmers, Person $A$ and Person $B$ intend to change the boundaries of their land so that it becomes like a straight line, not curvy as in image below. They do not want the area of ​​their origin to be reduced. Try define the boundary line they should agree on, and explain why the new boundary does not reduce the area of ​​their respective origins. [img]https://cdn.artofproblemsolving.com/attachments/4/d/ec771d15716365991487f3705f62e4566d0e41.png[/img] p3. The system of equations of four variables is given: $\left\{\begin{array}{l} 23x + 47y - 3z = 434 \\ 47x - 23y - 4w = 183 \\ 19z + 17w = 91 \end{array} \right. $ where $x, y, z$, and $w$ are positive integers. Determine the value of $(13x - 14y)^3 - (15z + 16w)^3$ p4. A person drives a motorized vehicle so that the material used fuel is obtained at the following graph. [img]https://cdn.artofproblemsolving.com/attachments/6/f/58e9f210fafe18bfb2d9a3f78d90ff50a847b2.png[/img] Initially the vehicle contains $ 3$ liters of fuel. After two hours, in the journey of fuel remains $ 1$ liter. a. If in $ 1$ liter he can cover a distance of $32$ km, what is the distance taken as a whole? Explain why you answered like that? b. After two hours of travel, is there any acceleration or deceleration? Explain your answer. c. Determine what the average speed of the vehicle is. p5. Amir will make a painting of the circles, each circle to be filled with numbers. The circle's painting is arrangement follows the pattern below. [img]https://cdn.artofproblemsolving.com/attachments/8/2/533bed783440ea8621ef21d88a56cdcb337f30.png[/img] He made a rule that the bottom four circles would be filled with positive numbers less than $10$ that can be taken from the numbers on the date of his birth, i.e. $26 \,\, - \,\, 12 \,\, - \,\,1961$ without recurrence. Meanwhile, the circles above will be filled with numbers which is the product of the two numbers on the circles in underneath. a. In how many ways can he place the numbers from left to right, right on the bottom circles in order to get the largest value on the top circle? Explain. b. On another occasion, he planned to put all the numbers on the date of birth so that the number of the lowest circle now, should be as many as $8$ circles. He no longer cares whether the numbers are repeated or not . i. In order to get the smallest value in the top circle, how should the numbers be arranged? ii. How many arrays are worth considering to produce the smallest value?

1990 China Team Selection Test, 3

Tags: algebra , function
In set $S$, there is an operation $'' \circ ''$ such that $\forall a,b \in S$, a unique $a \circ b \in S$ exists. And (i) $\forall a,b,c \in S$, $(a \circ b) \circ c = a \circ (b \circ c)$. (ii) $a \circ b \neq b \circ a$ when $a \neq b$. Prove that: a.) $\forall a,b,c \in S$, $(a \circ b) \circ c = a \circ c$. b.) If $S = \{1,2, \ldots, 1990\}$, try to define an operation $'' \circ ''$ in $S$ with the above properties.

1901 Eotvos Mathematical Competition, 2

Tags: algebra
If $$u=\text{cot} 22^{\circ}30’ \text{ },\text{ } v= \frac{1}{\text{sin} 22^{\circ}30’}$$ prove that $u$ satisfies a quadratic and $v$ a quartic (4th degree) equation with integral coefficients and with leading coefficients $1$.

VMEO IV 2015, 11.1

On Cartesian plane, given a line defined by $y=x+\frac{1}{\sqrt{2}}$. a) Prove that every circle has center $I\in d$ and radius is $\frac{1}{8}$ has no integral point inside. b) Find the greatest $k>0$ such that the distance of every integral points to $d$ is greater or equal than $k$.

1955 AMC 12/AHSME, 19

Two numbers whose sum is $ 6$ and the absolute value of whose difference is $ 8$ are roots of the equation: $ \textbf{(A)}\ x^2\minus{}6x\plus{}7\equal{}0 \qquad \textbf{(B)}\ x^2\minus{}6x\minus{}7\equal{}0 \qquad \textbf{(C)}\ x^2\plus{}6x\minus{}8\equal{}0 \\ \textbf{(D)}\ x^2\minus{}6x\plus{}8\equal{}0 \qquad \textbf{(E)}\ x^2\plus{}6x\minus{}7\equal{}0$

2021 Belarusian National Olympiad, 11.1

Find all functions $f: \mathbb{R} \to \mathbb{R}$, such that for all real $x,y$ the following equation holds:$$f(x-0.25)+f(y-0.25)=f(x+\lfloor y+0.25 \rfloor - 0.25)$$

1988 All Soviet Union Mathematical Olympiad, 466

Given a sequence of $19$ positive integers not exceeding $88$ and another sequence of $88$ positive integers not exceeding $19$. Show that we can find two subsequences of consecutive terms, one from each sequence, with the same sum.

2018 Dutch Mathematical Olympiad, 3

Determine all triples $(x, y,z)$ consisting of three distinct real numbers, that satisfy the following system of equations: $\begin {cases}x^2 + y^2 = -x + 3y + z \\ y^2 + z^2 = x + 3y - z \\ x^2 + z^2 = 2x + 2y - z \end {cases}$

2014 Contests, 1

Let $x,y$ be positive real numbers .Find the minimum of $x+y+\frac{|x-1|}{y}+\frac{|y-1|}{x}$.

1987 IMO Longlists, 78

Prove that for every natural number $k$ ($k \geq 2$) there exists an irrational number $r$ such that for every natural number $m$, \[[r^m] \equiv -1 \pmod k .\] [i]Remark.[/i] An easier variant: Find $r$ as a root of a polynomial of second degree with integer coefficients. [i]Proposed by Yugoslavia.[/i]

2014 Singapore Senior Math Olympiad, 26

Suppose that $x$ is measured in radians. Find the maximum value of \[\frac{\sin2x+\sin4x+\sin6x}{\cos2x+\cos4x+\cos6x}\] for $0\le x\le \frac{\pi}{16}$

2023 VIASM Summer Challenge, Problem 1

Tags: algebra
Find all relatively distinct integers $m, n, p\in \mathbb{Z}_{\ne 0}$ such that the polynomial $$F(x) = x(x - m)(x - n)(x - p) + 1$$is reducible in $\mathbb{Z}[x].$

2023 New Zealand MO, 2

Let $a, b$ and $c$ be positive real numbers such that $a+b+c = abc$. Prove that at least one of $a, b$ or $c$ is greater than $\frac{17}{10}$ .

2020 Brazil EGMO TST, 3

Tags: algebra
Let $a_0,a_1,a_2,\dots$ be a periodic sequence of real numbers(that is, there is a fixed positive integer $k$ such that $a_n=a_{n+k}$ for every integer $n\geq 0$). The following equality is true, for all $n\geq 0$: $a_{n+2}=\frac{1}{n+2} (a_n - \frac{n+1}{a_{n+1}})$ if $a_0=2020$, determine the value of $a_1$.

2019 Indonesia Juniors, day 2

P6. Determine all integer pairs $(x, y)$ satisfying the following system of equations. \[ \begin{cases} x + y - 6 &= \sqrt{2x + y + 1} \\ x^2 - x &= 3y + 5 \end{cases} \] P7. Determine the sum of all (positive) integers $n \leq 2019$ such that $1^2 + 2^2 + 3^2 + \cdots + n^2$ is an odd number and $1^1 + 2^2 + 3^3 + \cdots + n^n$ is also an odd number. P8. Two quadrilateral-based pyramids where the length of all its edges are the same, have their bases coincide, forming a new 3D figure called "8-plane" (octahedron). If the volume of such "8-plane" (octahedron) is $a^3\sqrt{2}$ cm$^3$, determine the volume of the largest sphere that can be fit inside such "8-plane" (octahedron). P9. Six-digit numbers $\overline{ABCDEF}$ with distinct digits are arranged from the digits 1, 2, 3, 4, 5, 6, 7, 8 with the rule that the sum of the first three numbers and the sum of the last three numbers are the same. Determine the probability that such arranged number has the property that either the first or last three digits (might be both) form an arithmetic sequence or a geometric sequence. [hide=Remarks (Answer spoiled)]It's a bit ambiguous whether the first or last three digits mentioned should be in that order, or not. If it should be in that order, the answer to this problem would be $\frac{1}{9}$, whereas if not, it would be $\frac{1}{3}$. Some of us agree that the correct interpretation should be the latter (which means that it's not in order) and the answer should be $\frac{1}{3}$. However since this is an essay problem, your interpretation can be written in your solution as well and it's left to the judges' discretion to accept your interpretation, or not. This problem is very bashy.[/hide] P10. $X_n$ denotes the number which is arranged by the digit $X$ written (concatenated) $n$ times. As an example, $2_{(3)} = 222$ and $5_{(2)} = 55$. For $A, B, C \in \{1, 2, \ldots, 9\}$ and $1 \leq n \leq 2019$, determine the number of ordered quadruples $(A, B, C, n)$ satisfying: \[ A_{(2n)} = 2 \left ( B_{(n)} \right ) + \left ( C_{(n)} \right )^2. \]

2001 Stanford Mathematics Tournament, 14

Find the prime factorization of $\textstyle\sum_{1\le i < j \le 100}ij$.

2013 Balkan MO Shortlist, A7

Suppose that $k$ is a positive integer. A bijective map $f : Z \to Z$ is said to be $k$-[i]jumpy [/i] if $|f(z) - z| \le k$ for all integers $z$. Is it that case that for every $k$, each $k$-jumpy map is a composition of $1$-jumpy maps? [i]It is well known that this is the case when the support of the map is finite.[/i]

2022 Vietnam TST, 1

Given a real number $\alpha$ and consider function $\varphi(x)=x^2e^{\alpha x}$ for $x\in\mathbb R$. Find all function $f:\mathbb R\to\mathbb R$ that satisfy: $$f(\varphi(x)+f(y))=y+\varphi(f(x))$$ forall $x,y\in\mathbb R$

2017 All-Russian Olympiad, 5

$P(x)$ is polynomial with degree $n\geq 2$ and nonnegative coefficients. $a,b,c$ - sides for some triangle. Prove, that $\sqrt[n]{P(a)},\sqrt[n]{P(b)},\sqrt[n]{P(c)}$ are sides for some triangle too.

2018 Estonia Team Selection Test, 3

Tags: algebra , sum , max , min , inequalities
Given a real number $c$ and an integer $m, m \ge 2$. Real numbers $x_1, x_2,... , x_m$ satisfy the conditions $x_1 + x_2 +...+ x_m = 0$ and $\frac{x^2_1 + x^2_2 + ...+ x^2_m}{m}= c$. Find max $(x_1, x_2,..., x_m)$ if it is known to be as small as possible.

2018 Dutch BxMO TST, 5

Tags: algebra , equation
Let $n$ be a positive integer. Determine all positive real numbers $x$ satisfying $nx^2 +\frac{2^2}{x + 1}+\frac{3^2}{x + 2}+...+\frac{(n + 1)^2}{x + n}= nx + \frac{n(n + 3)}{2}$

2021 Kazakhstan National Olympiad, 5

Let $a$ be a positive integer. Prove that for any pair $(x,y)$ of integer solutions of equation $$x(y^2-2x^2)+x+y+a=0$$ we have: $$|x| \leqslant a+\sqrt{2a^2+2}$$

III Soros Olympiad 1996 - 97 (Russia), 9.9

What is the smallest value that the expression $$\sqrt{3x-2y-1}+\sqrt{2x+y+2}+\sqrt{3y-x}$$ can take?

2002 Estonia National Olympiad, 1

Tags: algebra , min
Peeter, Juri, Kati and Mari are standing at the entrance of a dark tunnel. They have one torch and none of them dares to be in the tunnel without it, but the tunnel is so narrow that at most two people can move together. It takes $1$ minute for Peeter, $2$ minutes for Juri, $5$ for Kati and $10$ for Mari to pass the tunnel. Find the minimum time in which they can all pass through the tunnel.