This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2024 Mongolian Mathematical Olympiad, 1

Let $P(x)$ and $Q(x)$ be polynomials with nonnegative coefficients. We denote by $P'(x)$ the derivative of $P(x)$. Suppose that $P(0)=Q(0)=0$ and $Q(1) \leq 1 \leq P'(0)$. $(1)$ Prove that $0 \leq Q(x) \leq x \leq P(x)$ for all $0 \leq x \leq 1$. $(2)$ Prove that $P(Q(x)) \leq Q(P(x))$ for all $0 \leq x \leq 1$. [i]Proposed by Otgonbayar Uuye.[/i]

1997 Bosnia and Herzegovina Team Selection Test, 4

$a)$ In triangle $ABC$ let $A_1$, $B_1$ and $C_1$ be touching points of incircle $ABC$ with $BA$, $CA$ and $AB$, respectively. Let $l_1$, $l_2$ and $l_3$ be lenghts of arcs $ B_1C_1$, $A_1C_1$, $B_1A_1$ of incircle $ABC$, respectively, which does not contain points $A_1$, $B_1$ and $C_1$, respectively. Does the following inequality hold: $$ \frac{a}{l_1}+\frac{b}{l_2}+\frac{c}{l_3} \geq \frac{9\sqrt{3}}{\pi}$$ $b)$ Tetrahedron $ABCD$ has three pairs of equal opposing sides. Find length of height of tetrahedron in function od lengths of sides

2021 AMC 12/AHSME Fall, 23

A quadratic polynomial $p(x)$ with real coefficients and leading coefficient $1$ is called disrespectful if the equation $p(p(x)) = 0$ is satisfied by exactly three real numbers. Among all the disrespectful quadratic polynomials, there is a unique such polynomial $\tilde{p}(x)$ for which the sum of the roots is maximized. What is $\tilde{p}(1)?$ $\textbf{(A) }\dfrac5{16} \qquad \textbf{(B) }\dfrac12 \qquad \textbf{(C) }\dfrac58 \qquad \textbf{(D) }1 \qquad \textbf{(E) }\dfrac98$

1966 Poland - Second Round, 2

Prove that if two cubic polynomials with integer coefficients have an irrational root in common, then they have another common irrational root.

2014 District Olympiad, 1

Prove that: [list=a][*]$\displaystyle\left( \frac{1}{2}\right) ^{3}+\left( \frac{2}{3}\right)^{3}+\left( \frac{5}{6}\right) ^{3}=1$ [*]$3^{33}+4^{33}+5^{33}<6^{33}$[/list]

2009 China Team Selection Test, 3

Let $ f(x)$ be a $ n \minus{}$degree polynomial all of whose coefficients are equal to $ \pm 1$, and having $ x \equal{} 1$ as its $ m$ multiple root. If $ m\ge 2^k (k\ge 2,k\in N)$, then $ n\ge 2^{k \plus{} 1} \minus{} 1.$

2013 Princeton University Math Competition, 8

If $x,y$ are real, then the $\textit{absolute value}$ of the complex number $z=x+yi$ is \[|z|=\sqrt{x^2+y^2}.\] Find the number of polynomials $f(t)=A_0+A_1t+A_2t^2+A_3t^3+t^4$ such that $A_0,\ldots,A_3$ are integers and all roots of $f$ in the complex plane have absolute value $\leq 1$.

2021 China Team Selection Test, 4

Let $f(x),g(x)$ be two polynomials with integer coefficients. It is known that for infinitely many prime $p$, there exist integer $m_p$ such that $$f(a) \equiv g(a+m_p) \pmod p$$ holds for all $a \in \mathbb{Z}.$ Prove that there exists a rational number $r$ such that $$f(x)=g(x+r).$$

1997 IMO Shortlist, 19

Let $ a_1\geq \cdots \geq a_n \geq a_{n \plus{} 1} \equal{} 0$ be real numbers. Show that \[ \sqrt {\sum_{k \equal{} 1}^n a_k} \leq \sum_{k \equal{} 1}^n \sqrt k (\sqrt {a_k} \minus{} \sqrt {a_{k \plus{} 1}}). \] [i]Proposed by Romania[/i]

1997 China Team Selection Test, 3

Prove that there exists $m \in \mathbb{N}$ such that there exists an integral sequence $\lbrace a_n \rbrace$ which satisfies: [b]I.[/b] $a_0 = 1, a_1 = 337$; [b]II.[/b] $(a_{n + 1} a_{n - 1} - a_n^2) + \frac{3}{4}(a_{n + 1} + a_{n - 1} - 2a_n) = m, \forall$ $n \geq 1$; [b]III. [/b]$\frac{1}{6}(a_n + 1)(2a_n + 1)$ is a perfect square $\forall$ $n \geq 1$.

2018 Peru EGMO TST, 2

Find all functions $f:\mathbb R \rightarrow \mathbb R$, such that $2xyf(x^2-y^2)=(x^2-y^2)f(x)f(2y)$

2010 Germany Team Selection Test, 3

Let $P(x)$ be a non-constant polynomial with integer coefficients. Prove that there is no function $T$ from the set of integers into the set of integers such that the number of integers $x$ with $T^n(x)=x$ is equal to $P(n)$ for every $n\geq 1$, where $T^n$ denotes the $n$-fold application of $T$. [i]Proposed by Jozsef Pelikan, Hungary[/i]

2001 Tournament Of Towns, 1

Tags: algebra
In a certain country $10\%$ of the employees get $90\%$ of the total salary paid in this country. Supposing that the country is divided in several regions, is it possible that in every region the total salary of any 10% of the employees is no greater than $11\%$ of the total salary paid in this region?

2020 China Northern MO, BP2

Given $a,b,c \in \mathbb{R}$ satisfying $a+b+c=a^2+b^2+c^2=1$, show that $\frac{-1}{4} \leq ab \leq \frac{4}{9}$.

2019 Saint Petersburg Mathematical Olympiad, 1

For a non-constant arithmetic progression $(a_n)$ there exists a natural $n$ such that $a_{n}+a_{n+1} = a_{1}+…+a_{3n-1}$ . Prove that there are no zero terms in this progression.

1979 Chisinau City MO, 180

It is known that for $0\le x \le 1$ the square trinomial $f (x)$ satisfies the condition $|f(x) | \le 1$. Show that $| f '(0) | \le 8.$

1939 Eotvos Mathematical Competition, 1

Let $a_1$, $a_2$, $b_1$, $b_2$, $c_1$ and $c_2$ be real numbers for which $a_1a_2 > 0$, $a_1c_1 \ge b^2_1$ and $a_2c_2 > b^2_2$. Prove that $$(a_1 + a_2)(c_1 + c_2) \ge (b_1 + b_2)^2$$

2019 Junior Balkan Team Selection Tests - Moldova, 10

Tags: algebra
Positive real numbers $a$ and $b$ verify $a^5+b^5=a^3+b^3$. Find the greatest possible value of the expression $E=a^2-ab+b^2$.

2005 Thailand Mathematical Olympiad, 17

Tags: algebra
For $a, b \ge 0$ we define $a * b = \frac{a+b+1}{ab+12}$ . Compute $0*(1*(2*(... (2003*(2004*2005))...)))$.

2008 Polish MO Finals, 2

Tags: function , algebra
A function $ f: R^3\rightarrow R$ for all reals $ a,b,c,d,e$ satisfies a condition: \[ f(a,b,c)\plus{}f(b,c,d)\plus{}f(c,d,e)\plus{}f(d,e,a)\plus{}f(e,a,b)\equal{}a\plus{}b\plus{}c\plus{}d\plus{}e\] Show that for all reals $ x_1,x_2,\ldots,x_n$ ($ n\geq 5$) equality holds: \[ f(x_1,x_2,x_3)\plus{}f(x_2,x_3,x_4)\plus{}\ldots \plus{}f(x_{n\minus{}1},x_n,x_1)\plus{}f(x_n,x_1,x_2)\equal{}x_1\plus{}x_2\plus{}\ldots\plus{}x_n\]

2012 France Team Selection Test, 1

Tags: function , algebra
Let $k>1$ be an integer. A function $f:\mathbb{N^*}\to\mathbb{N^*}$ is called $k$-[i]tastrophic[/i] when for every integer $n>0$, we have $f_k(n)=n^k$ where $f_k$ is the $k$-th iteration of $f$: \[f_k(n)=\underbrace{f\circ f\circ\cdots \circ f}_{k\text{ times}}(n)\] For which $k$ does there exist a $k$-tastrophic function?

2007 Bulgarian Autumn Math Competition, Problem 11.1

Let $0<\alpha,\beta<\frac{\pi}{2}$ which satisfy \[(\cos^2\alpha+\cos^2\beta)(1+\tan\alpha\tan\beta)=2\] Prove that $\alpha+\beta=\frac{\pi}{2}$.

2023 Girls in Mathematics Tournament, 1

Define $(a_n)$ a sequence, where $a_1= 12, a_2= 24$ and for $n\geq 3$, we have: $$a_n= a_{n-2}+14$$ a) Is $2023$ in the sequence? b) Show that there are no perfect squares in the sequence.

1981 Romania Team Selection Tests, 4.

Determine the function $f:\mathbb{R}\to\mathbb{R}$ such that $\forall x\in\mathbb{R}$ \[f(x)+f(\lfloor x\rfloor)f(\{x\})=x,\] and draw its graph. Find all $k\in\mathbb{R}$ for which the equation $f(x)+mx+k=0$ has solutions for any $m\in\mathbb{R}$. [i]V. Preda and P. Hamburg[/i]

2011 HMNT, 2

Tags: algebra
Determine the set of all real numbers $p$ for which the polynomial $Q(x) = x^3 + px^2 - px - 1$ has three distinct real roots.