Found problems: 15925
1977 All Soviet Union Mathematical Olympiad, 236
Given several points, not all lying on one straight line. Some number is assigned to every point. It is known, that if a straight line contains two or more points, than the sum of the assigned to those points equals zero. Prove that all the numbers equal to zero.
1988 Vietnam National Olympiad, 2
Suppose that $ ABC$ is an acute triangle such that $ \tan A$, $ \tan B$, $ \tan C$ are the three roots of the equation $ x^3 \plus{} px^2 \plus{} qx \plus{} p \equal{} 0$, where $ q\neq 1$. Show that $ p \le \minus{} 3\sqrt 3$ and $ q > 1$.
1937 Moscow Mathematical Olympiad, 032
Solve the system $\begin{cases} x+ y +z = a \\
x^2 + y^2 + z^2 = a^2 \\
x^3 + y^3 +z^3 = a^3
\end{cases}$
2009 Philippine MO, 4
Let $k$ be a positive real number such that $$\frac{1}{k+a} + \frac{1}{k+b} + \frac{1}{k+c} \leq 1$$ for any positive positive real numbers $a$, $b$ and $c$ with $abc = 1$. Find the minimum value of $k$.
2017 Junior Balkan Team Selection Tests - Moldova, Problem 6
Let $a,b$ and $c$ be real numbers such that $|a+b|+|b+c|+|c+a|=8.$
Find the maximum and minimum value of the expression $P=a^2+b^2+c^2.$
2015 Estonia Team Selection Test, 10
Let $n$ be an integer and $a, b$ real numbers such that $n > 1$ and $a > b > 0$. Prove that $$(a^n - b^n) \left ( \frac{1}{b^{n- 1}} - \frac{1}{a^{n -1}}\right) > 4n(n -1)(\sqrt{a} - \sqrt{b})^2$$
2023 UMD Math Competition Part I, #21
Let $a, b, c, d, e$ be real numbers such that $a<b<c<d<e.$ The least possible value of the function $f: \mathbb R \to \mathbb R$ with $f(x) = |x-a| + |x - b|+ |x - c| + |x - d|+ |x - e|$ is
$$
\mathrm a. ~ e+d+c+b+a\qquad \mathrm b.~e+d+c-b-a\qquad \mathrm c. ~e+d+|c|-b-a \qquad \mathrm d. ~e+d+b-a \qquad \mathrm e. ~e+d-b-a
$$
2006 Czech and Slovak Olympiad III A, 2
Let $m,n$ be positive integers such that the equation (in respect of $x$)
\[(x+m)(x+n)=x+m+n\]
has at least one integer root. Prove that $\frac{1}{2}n<m<2n$.
2019 Balkan MO Shortlist, A1
Let $a_0$ be an arbitrary positive integer. Consider the infinite sequence $(a_n)_{n\geq 1}$, defined inductively as follows: given $a_0, a_1, ..., a_{n-1}$ define the term $a_n$ as the smallest positive integer such that $a_0+a_1+...+a_n$ is divisible by $n$. Prove that there exist a positive integer a positive integer $M$ such that $a_{n+1}=a_n$ for all $n\geq M$.
2013 India PRMO, 2
Let $S_n=\sum_{k=0}^{n}\frac{1}{\sqrt{k+1}+\sqrt{k}}$. What is the value of $\sum_{n=1}^{99}\frac{1}{S_n+S_{n-1}}$ ?
2014 Contests, 1
Let $f : \mathbb{Z} \rightarrow \mathbb{Z}^+$ be a function, and define $h : \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z}^+$ by $h(x, y) = \gcd (f(x), f(y))$. If $h(x, y)$ is a two-variable polynomial in $x$ and $y$, prove that it must be constant.
2008 Germany Team Selection Test, 1
A sequence $ (S_n), n \geq 1$ of sets of natural numbers with $ S_1 = \{1\}, S_2 = \{2\}$ and
\[{ S_{n + 1} = \{k \in }\mathbb{N}|k - 1 \in S_n \text{ XOR } k \in S_{n - 1}\}.
\]
Determine $ S_{1024}.$
1969 German National Olympiad, 5
Prove that for all real numbers $x$ holds:
$$\sin 5x = 16 \sin x \cdot \sin \left(x -\frac{\pi}{5} \right) \cdot \sin\left(x -\frac{2\pi}{5} \right) \sin \left(x +\frac{2\pi}{5} \right) $$
2023 German National Olympiad, 1
Determine all pairs $(m,n)$ of integers with $n \ge m$ satisfying the equation
\[n^3+m^3-nm(n+m)=2023.\]
2006 Victor Vâlcovici, 3
Let be four functions $ f,g,s,i:\mathbb{N}\longrightarrow\mathbb{N} $ such that $ s(x)=\max (f(x),g(x)) $ and $ i(x)=\min (f(x),g(x)) , $ for any natural number $ x. $ Prove that $ f=g $ if $ s $ is surjective and $ i $ injective.
2024 Benelux, 1
Let $a_0,a_1,\dots,a_{2024}$ be real numbers such that $\left|a_{i+1}-a_i\right| \le 1$ for $i=0,1,\dots,2023$.
a) Find the minimum possible value of $$a_0a_1+a_1a_2+\dots+a_{2023}a_{2024}$$
b) Does there exist a real number $C$ such that $$a_0a_1-a_1a_2+a_2a_3-a_3a_4+\dots+a_{2022}a_{2023}-a_{2023}a_{2024} \ge C$$ for all real numbers $a_0,a_1,\dots,a_2024$ such that $\left|a_{i+1}-a_i\right| \le 1$ for $i=0,1,\dots,2023$.
1992 Chile National Olympiad, 3
Determine the number of times and the positions in which it appears $\frac12$ in the following sequence of fractions:
$$ \frac11, \frac21, \frac12 , \frac31 , \frac22 , \frac13 , \frac41,\frac32,\frac23,\frac14,..., \frac{1}{1992}$$
OMMC POTM, 2021 12
Let $r,s,t$ be the roots of $x^3+6x^2+7x+8$. Find
$$(r^2+s+t)(s^2+t+r)(t^2+r+s).$$
[i]Proposed by Evan Chang (squareman), USA[/i]
2012 Romania Team Selection Test, 3
Let $m$ and $n$ be two positive integers for which $m<n$. $n$ distinct points $X_1,\ldots , X_n$ are in the interior of the unit disc and at least one of them is on its border. Prove that we can find $m$ distinct points $X_{i_1},\ldots , X_{i_m}$ so that the distance between their center of gravity and the center of the circle is at least $\frac{1}{1+2m(1- 1/n)}$.
2012 BMT Spring, Championship
[b]p1.[/b] If $n$ is a positive integer such that $2n+1 = 144169^2$, find two consecutive numbers whose squares add up to $n + 1$.
[b]p2.[/b] Katniss has an $n$-sided fair die which she rolls. If $n > 2$, she can either choose to let the value rolled be her score, or she can choose to roll a $n - 1$ sided fair die, continuing the process. What is the expected value of her score assuming Katniss starts with a $6$ sided die and plays to maximize this expected value?
[b]p3.[/b] Suppose that $f(x) = x^6 + ax^5 + bx^4 + cx^3 + dx^2 + ex + f$, and that $f(1) = f(2) = f(3) = f(4) = f(5) = f(6) = 7$. What is $a$?
[b]p4.[/b] $a$ and $b$ are positive integers so that $20a+12b$ and $20b-12a$ are both powers of $2$, but $a+b$ is not. Find the minimum possible value of $a + b$.
[b]p5.[/b] Square $ABCD$ and rhombus $CDEF$ share a side. If $m\angle DCF = 36^o$, find the measure of $\angle AEC$.
[b]p6.[/b] Tom challenges Harry to a game. Tom first blindfolds Harry and begins to set up the game. Tom places $4$ quarters on an index card, one on each corner of the card. It is Harry’s job to flip all the coins either face-up or face-down using the following rules:
(a) Harry is allowed to flip as many coins as he wants during his turn.
(b) A turn consists of Harry flipping as many coins as he wants (while blindfolded). When he is happy with what he has flipped, Harry will ask Tom whether or not he was successful in flipping all the coins face-up or face-down. If yes, then Harry wins. If no, then Tom will take the index card back, rotate the card however he wants, and return it back to Harry, thus starting Harry’s next turn. Note that Tom cannot touch the coins after he initially places them before starting the game.
Assuming that Tom’s initial configuration of the coins weren’t all face-up or face-down, and assuming that Harry uses the most efficient algorithm, how many moves maximum will Harry need in order to win? Or will he never win?
PS. You had better use hide for answers.
1997 Romania National Olympiad, 3
Let $K$ be a finite field, $n \ge 2$ an integer, $f \in K[X]$ an irreducible polynomial of degree $n,$ and $g$ the product of all the nonconstant polynomials in $K[X]$ of degree at most $n-1.$ Prove that $f$ divides $g-1.$
2016 District Olympiad, 3
Let $ \alpha ,\beta $ be real numbers. Find the greatest value of the expression
$$ |\alpha x +\beta y| +|\alpha x-\beta y| $$
in each of the following cases:
[b]a)[/b] $ x,y\in \mathbb{R} $ and $ |x|,|y|\le 1 $
[b]b)[/b] $ x,y\in \mathbb{C} $ and $ |x|,|y|\le 1 $
2008 Vietnam Team Selection Test, 2
Find all values of the positive integer $ m$ such that there exists polynomials $ P(x),Q(x),R(x,y)$ with real coefficient satisfying the condition: For every real numbers $ a,b$ which satisfying $ a^m-b^2=0$, we always have that $ P(R(a,b))=a$ and $ Q(R(a,b))=b$.
2000 Croatia National Olympiad, Problem 1
Find all positive integer solutions $x,y,z$ such that $1/x +2/y - 3/z=1$
2008 Chile National Olympiad, 5
When planning a trip from Temuco to the extreme north of the country, a truck driver notices that to cross the Atacama desert you must cross a distance of $800$ km between two stations consecutive service. Your truck can only store $50$ liters of benzene, and has a yield of $10$ km per liter. The trucker can leave gasoline stored in cans on the side of the road in different points along the way. For example, with an initial total charge of $50$ liters you can travel $100$ km, leave $30$ liters stored at the point you reached, and return to the starting point (with zero load) to refuel. The trucker decides to start the trip and arrives at the first service station with a zero load of fuel.
a) Can the trucker cross the desert if at this service station the total supply is $140$ liters?
b) Can the trucker cross the desert if the total supply of gasoline at the station is $180$ liters?