Found problems: 15925
2010 Contests, 2
For a positive integer $n$, we define the function $f_n(x)=\sum_{k=1}^n |x-k|$ for all real numbers $x$. For any two-digit number $n$ (in decimal representation), determine the set of solutions $\mathbb{L}_n$ of the inequality $f_n(x)<41$.
[i](41st Austrian Mathematical Olympiad, National Competition, part 1, Problem 2)[/i]
2005 Estonia National Olympiad, 1
Real numbers $x$ and $y$ satisfy the system of equalities
$$\begin{cases} \sin x + \cos y = 1 \\ \cos x + \sin y = -1 \end{cases}$$
Prove that $\cos 2x = \cos 2y$.
2018 Poland - Second Round, 1
Determine all functions $f: \mathbb{R} \rightarrow \mathbb{R}$ which satisfy conditions:
$f(x) + f(y) \ge xy$ for all real $x, y$ and
for each real $x$ exists real $y$, such that $f(x) + f(y) = xy$.
2018 Flanders Math Olympiad, 2
Prove that for every acute angle $\alpha$, $\sin (\cos \alpha) < \cos(\sin \alpha)$.
2001 Romania National Olympiad, 4
Let $n\ge 2$ be an even integer and $a,b$ real numbers such that $b^n=3a+1$. Show that the polynomial $P(X)=(X^2+X+1)^n-X^n-a$ is divisible by $Q(X)=X^3+X^2+X+b$ if and only if $b=1$.
2009 Federal Competition For Advanced Students, P1, 1
Show that for all positive integer $n$ the following inequality holds $3^{n^2} > (n!)^4$
.
2022 Malaysia IMONST 2, 2
It is known that there are $n$ integers $a_1, a_2, \cdots, a_n$ such that
$$a_1 + a_2 + \cdots + a_n = 0 \qquad \text{and} \qquad a_1 \times a_2 \times \cdots \times a_n = n.$$
Determine all possible values of $n$.
2004 Junior Tuymaada Olympiad, 1
A positive rational number is written on the blackboard. Every minute Vasya replaces the number $ r $ written on the board with $ \sqrt {r + 1} $. Prove that someday he will get an irrational number.
2015 India Regional MathematicaI Olympiad, 3
Let $P(x)$ be a polynomial whose coefficients are positive integers. If $P(n)$ divides $P(P(n)-2015)$ for every natural number $n$, prove that $P(-2015)=0$.
[hide]One additional condition must be given that $P$ is non-constant, which even though is understood.[/hide]
2007 IMC, 2
Let $ x$, $ y$ and $ z$ be integers such that $ S = x^{4}+y^{4}+z^{4}$ is divisible by 29. Show that $ S$ is divisible by $ 29^{4}$.
STEMS 2023 Math Cat A, 5
Consider a polynomial $P(x) \in \mathbb{R}[x]$, with degree $2023$, such that $P(\sin^2(x))+P(\cos^2(x)) =1$ for all $x \in \mathbb{R}$. If the sum of all roots of $P$ is equal to $\dfrac{p}{q}$ with $p, q$ coprime, then what is the product $pq$?
2012 Hanoi Open Mathematics Competitions, 2
Compare the numbers $P = 2^a,Q = 3, T = 2^b$, where $a=\sqrt2 , b=1+\frac{1}{\sqrt2}$
(A) $P < Q < T$, (B) $T < P < Q$, (C) $P < T < Q$, (D) $T < Q < P$, (E) $ Q < P < T$
2015 Bosnia And Herzegovina - Regional Olympiad, 1
Solve the inequation: $$5\mid x\mid \leq x(3x+2-2\sqrt{8-2x-x^2})$$
2019 Purple Comet Problems, 28
There are positive integers $m$ and $n$ such that $m^2 -n = 32$ and $\sqrt[5]{m +\sqrt{n}}+ \sqrt[5]{m -\sqrt{n}}$ is a real root of the polynomial $x^5 - 10x^3 + 20x - 40$. Find $m + n$.
2009 Germany Team Selection Test, 3
Find all functions $ f: \mathbb{R} \mapsto \mathbb{R}$ such that $ \forall x,y,z \in \mathbb{R}$ we have: If
\[ x^3 \plus{} f(y) \cdot x \plus{} f(z) \equal{} 0,\]
then
\[ f(x)^3 \plus{} y \cdot f(x) \plus{} z \equal{} 0.\]
2019 European Mathematical Cup, 2
Let $(x_n)_{n\in \mathbb{N}}$ be a sequence defined recursively such that $x_1=\sqrt{2}$ and
$$x_{n+1}=x_n+\frac{1}{x_n}\text{ for }n\in \mathbb{N}.$$
Prove that the following inequality holds:
$$\frac{x_1^2}{2x_1x_2-1}+\frac{x_2^2}{2x_2x_3-1}+\dotsc +\frac{x_{2018}^2}{2x_{2018}x_{2019}-1}+\frac{x_{2019}^2}{2x_{2019}x_{2020}-1}>\frac{2019^2}{x_{2019}^2+\frac{1}{x_{2019}^2}}.$$
[i]Proposed by Ivan Novak[/i]
2010 IMO Shortlist, 3
Find the smallest number $n$ such that there exist polynomials $f_1, f_2, \ldots , f_n$ with rational coefficients satisfying \[x^2+7 = f_1\left(x\right)^2 + f_2\left(x\right)^2 + \ldots + f_n\left(x\right)^2.\]
[i]Proposed by Mariusz Skałba, Poland[/i]
1995 Poland - Second Round, 3
Let $a,b,c,d$ be positive irrational numbers with $a+b = 1$.
Show that $c+d = 1$ if and only if $[na]+[nb] = [nc]+[nd]$ for all positive integers $n$.
2009 Ukraine National Mathematical Olympiad, 4
Find all polynomials $P(x)$ with real coefficients such that for all pairwise distinct positive integers $x, y, z, t$ with $x^2 + y^2 + z^2 = 2t^2$ and $\gcd(x, y, z, t ) = 1,$ the following equality holds
\[2P^2(t ) + 2P(xy + yz + zx) = P^2(x + y + z) .\]
[b]Note.[/b] $P^2(k)=\left( P(k) \right)^2.$
2013 Singapore Senior Math Olympiad, 3
Let $b_1,b_2,... $ be a sequence of positive real numbers such that for each $ n\ge 1$, $$b_{n+1}^2 \ge \frac{b_1^2}{1^3}+\frac{b_2^2}{2^3}+...+\frac{b_n^2}{n^3}$$
Show that there is a positive integer $M$ such that $$\sum_{n=1}^M \frac{b_{n+1}}{b_1+b_2+...+b_n} > \frac{2013}{1013}$$
1987 All Soviet Union Mathematical Olympiad, 456
Every evening uncle Chernomor (see Pushkin's tales) appoints either $9$ or $10$ of his 33 "knights" in the "night guard". When it can happen, for the first time, that every knight has been on duty the same number of times?
2019 Bangladesh Mathematical Olympiad, 4
$A$ is a positive real number.$n$ is positive integer number.Find the set of possible values of the infinite sum $x_0^n+x_1^n+x_2^n+...$ where $x_0,x_1,x_2...$ are all positive real numbers so that the infinite series $x_0+x_1+x_2+...$ has sum $A$.
LMT Team Rounds 2010-20, 2017
[b]p1.[/b] Suppose that $20\%$ of a number is $17$. Find $20\%$ of $17\%$ of the number.
[b]p2.[/b] Let $A, B, C, D$ represent the numbers $1$ through $4$ in some order, with $A \ne 1$. Find the maximum possible value of $\frac{\log_A B}{C +D}$.
Here, $\log_A B$ is the unique real number $X$ such that $A^X = B$.
[b]p3. [/b]There are six points in a plane, no four of which are collinear. A line is formed connecting every pair of points. Find the smallest possible number of distinct lines formed.
[b]p4.[/b] Let $a,b,c$ be real numbers which satisfy $$\frac{2017}{a}= a(b +c),
\frac{2017}{b}= b(a +c),
\frac{2017}{c}= c(a +b).$$ Find the sum of all possible values of $abc$.
[b]p5.[/b] Let $a$ and $b$ be complex numbers such that $ab + a +b = (a +b +1)(a +b +3)$. Find all possible values of $\frac{a+1}{b+1}$.
[b]p6.[/b] Let $\vartriangle ABC$ be a triangle. Let $X,Y,Z$ be points on lines $BC$, $CA$, and $AB$, respectively, such that $X$ lies on segment $BC$, $B$ lies on segment $AY$ , and $C$ lies on segment $AZ$. Suppose that the circumcircle of $\vartriangle XYZ$ is tangent to lines $AB$, $BC$, and $CA$ with center $I_A$. If $AB = 20$ and $I_AC = AC = 17$ then compute the length of segment $BC$.
[b]p7. [/b]An ant makes $4034$ moves on a coordinate plane, beginning at the point $(0, 0)$ and ending at $(2017, 2017)$. Each move consists of moving one unit in a direction parallel to one of the axes. Suppose that the ant stays within the region $|x - y| \le 2$. Let N be the number of paths the ant can take. Find the remainder when $N$ is divided by $1000$.
[b]p8.[/b] A $10$ digit positive integer $\overline{a_9a_8a_7...a_1a_0}$ with $a_9$ nonzero is called [i]deceptive [/i] if there exist distinct indices $i > j$ such that $\overline{a_i a_j} = 37$. Find the number of deceptive positive integers.
[b]p9.[/b] A circle passing through the points $(2, 0)$ and $(1, 7)$ is tangent to the $y$-axis at $(0, r )$. Find all possible values of $ r$.
[b]p10.[/b] An ellipse with major and minor axes $20$ and $17$, respectively, is inscribed in a square whose diagonals coincide with the axes of the ellipse. Find the area of the square.
PS. You had better use hide for answers.
2004 All-Russian Olympiad Regional Round, 8.1
On two intersecting roads with equal constant speeds Audi and BMW cars are moving fast. It turned out that as in 17.00, and at 18.00 the BMW was twice as far from the intersection, than ''Audi''. At what time could an Audi drive across the river?
2023 Balkan MO Shortlist, A3
Find all functions $f:\mathbb{R} \rightarrow \mathbb{R}$, such that $$f(xy+f(x^2))=xf(x+y)$$ for all reals $x, y$.