This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1992 IMO Longlists, 62

Let $c_1, \cdots, c_n \ (n \geq 2)$ be real numbers such that $0 \leq \sum c_i \leq n$. Prove that there exist integers $k_1, \cdots , k_n$ such that $\sum k_i=0$ and $1-n \leq c_i + nk_i \leq n$ for every $i = 1, \cdots , n.$

2009 Moldova Team Selection Test, 1

Tags: algebra
[color=darkred]For any $ m \in \mathbb{N}^*$ solve the ecuation \[ \left\{\left( x \plus{} \frac {1}{m}\right) ^3\right\} \equal{} x^3 \] [/color]

LMT Team Rounds 2021+, 12

Tags: algebra
Let $x, y$, and $z$ be three not necessarily real numbers that satisfy the following system of equations: $x^3 -4 = (2y +1)^2$ $y^3 -4 = (2z +1)^2$ $z^3 -4 = (2x +1)^2$. Find the greatest possible real value of $(x -1)(y -1)(z -1)$.

1963 Kurschak Competition, 2

$A$ is an acute angle. Show that $$\left(1 +\frac{1}{sen A}\right)\left(1 +\frac{1}{cos A}\right)> 5$$

1989 AMC 12/AHSME, 10

Hi guys, I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this: 1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though. 2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary. 3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions: A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh? B. Do NOT go back to the previous problem(s). This causes too much confusion. C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for. 4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving! Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D

2022 Bangladesh Mathematical Olympiad, 3

Tags: algebra
Prove that if the numbers $3,4,5, \dots ,3^5$ are partitioned into two disjoint sets, then in one of the sets the number $a,b,c$ can be found such that $ab=c.$ ($a,b,c$ may not be pairwise distinct)

2020 Switzerland Team Selection Test, 12

Let $a,b,c,d$ be positive real numbers such that $a+b+c+d=1$ prove that: ($\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a})^5 \geq 5^5(\frac{ac}{27})^2$

1992 Polish MO Finals, 2

Tags: algebra , function
Find all functions $f : \mathbb{Q}^{+} \rightarrow \mathbb{Q}^{+}$, where $\mathbb{Q}^{+}$ is the set of positive rationals, such that $f(x+1) = f(x) + 1$ and $f(x^3) = f(x)^3$ for all $x$.

1992 All Soviet Union Mathematical Olympiad, 580

If $a > b > c > d > 0$ are integers such that $ad = bc$, show that $$(a - d)^2 \ge 4d + 8$$

2011 Ukraine Team Selection Test, 5

Denote by $\mathbb{Q}^+$ the set of all positive rational numbers. Determine all functions $f : \mathbb{Q}^+ \mapsto \mathbb{Q}^+$ which satisfy the following equation for all $x, y \in \mathbb{Q}^+:$ \[f\left( f(x)^2y \right) = x^3 f(xy).\] [i]Proposed by Thomas Huber, Switzerland[/i]

LMT Guts Rounds, 2013

[u]Round 9[/u] [b]p25.[/b] Define a hilly number to be a number with distinct digits such that when its digits are read from left to right, they strictly increase, then strictly decrease. For example, $483$ and $1230$ are both hilly numbers, but $123$ and $1212$ are not. How many $5$-digit hilly numbers are there? [b]p26.[/b] Triangle ABC has $AB = 4$ and $AC = 6$. Let the intersection of the angle bisector of $\angle BAC$ and $\overline{BC}$ be $D$ and the foot of the perpendicular from C to the angle bisector of $\angle BAC$ be $E$. What is the value of $AD/AE$? [b]p27.[/b] Given that $(7+ 4\sqrt3)^x+ (7-4\sqrt3)^x = 10$, find all possible values of $(7+ 4\sqrt3)^x-(7-4\sqrt3)^x$. [u]Round 10[/u] Note: In this set, the answers for each problem rely on answers to the other problems. [b]p28.[/b] Let X be the answer to question $29$. If $5A + 5B = 5X - 8$ and $A^2 + AB - 2B^2 = 0$, find the sum of all possible values of $A$. [b]p29.[/b] Let $W$ be the answer to question $28$. In isosceles trapezoid $ABCD$ with $\overline{AB} \parallel \overline{CD}$, line segments $ \overline{AC}$ and $ \overline{BD}$ split each other in the ratio $2 : 1$. Given that the length of $BC$ is $W$, what is the greatest possible length of $\overline{AB}$ for which there is only one trapezoid $ABCD$ satisfying the given conditions? [b]p30.[/b] Let $W$ be the answer to question $28$ and $X$ be the answer to question $29$. For what value of $Z$ is $ |Z - X| + |Z - W| - |W + X - Z|$ at a minimum? [u]Round 11[/u] [b]p31.[/b] Peijin wants to draw the horizon of Yellowstone Park, but he forgot what it looked like. He remembers that the horizon was a string of $10$ segments, each one either increasing with slope $1$, remaining flat, or decreasing with slope $1$. Given that the horizon never dipped more than $1$ unit below or rose more than $1$ unit above the starting point and that it returned to the starting elevation, how many possible pictures can Peijin draw? [b]p32.[/b] DNA sequences are long strings of $A, T, C$, and $G$, called base pairs. (e.g. AATGCA is a DNA sequence of 6 base pairs). A DNA sequence is called stunningly nondescript if it contains each of A, T, C, G, in some order, in 4 consecutive base pairs somewhere in the sequence. Find the number of stunningly nondescript DNA sequences of 6 base pairs (the example above is to be included in this count). [b]p33.[/b] Given variables s, t that satisfy $(3 + 2s + 3t)^2 + (7 - 2t)^2 + (5 - 2s - t)^2 = 83$, find the minimum possible value of $(-5 + 2s + 3t) ^2 + (3 - 2t)^2 + (2 - 2s - t)^2$. [u]Round 12[/u] [b]p34.[/b] Let $f(n)$ be the number of powers of 2 with n digits. For how many values of n from $1$ to $2013$ inclusive does $f(n) = 3$? If your answer is N and the actual answer is $C$, then the score you will receive on this problem is $max\{15 - \frac{|N-C|}{26039} , 0\}$, rounded to the nearest integer. [b]p35.[/b] How many total characters are there in the source files for the LMT $2013$ problems? If your answer is $N$ and the actual answer is $C$, then the score you receive on this problem is $max\{15 - \frac{|N - C|}{1337}, 0\}$, rounded to the nearest integer. [b]p36.[/b] Write down two distinct integers between $0$ and $300$, inclusive. Let $S$ be the collection of everyone’s guesses. Let x be the smallest nonnegative difference between one of your guesses and another guess in $S$ (possibly your other guess). Your team will be awarded $min(15, x)$ points. PS. You should use hide for answers.Rounds 1-4 are [url=https://artofproblemsolving.com/community/c3h3134546p28406927]here [/url] and 6-8 [url=https://artofproblemsolving.com/community/c3h3136014p28427163]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 CHMMC Winter (2020-21), 10

Let $\omega$ be a nonreal $47$th root of unity. Suppose that $\mathcal{S}$ is the set of polynomials of degree at most $46$ and coefficients equal to either $0$ or $1$. Let $N$ be the number of polynomials $Q \in \mathcal{S}$ such that \[ \sum_{j = 0}^{46} \frac{Q(\omega^{2j}) - Q(\omega^{j})}{\omega^{4j} + \omega^{3j} + \omega^{2j} + \omega^j + 1} = 47. \] The prime factorization of $N$ is $p_1^{\alpha_1}p_2^{\alpha_2} \dots p_s^{\alpha_s}$ where $p_1, \ldots, p_s$ are distinct primes and $\alpha_1, \alpha_2, \ldots, \alpha_s$ are positive integers. Compute $\sum_{j = 1}^s p_j\alpha_j$.

2023 VN Math Olympiad For High School Students, Problem 7

Tags: algebra
Given a polynomial with integer coefficents$$P(x)=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0,n\ge 1$$satisfying these conditions: i) $|a_0|$ is not a perfect square. ii) $P(x)$ is irreducible in $\mathbb{Q}[x].$ Prove that: $P(x^2)$ is irreducible in $\mathbb{Q}[x].$

1980 IMO Longlists, 2

Define the numbers $a_0, a_1, \ldots, a_n$ in the following way: \[ a_0 = \frac{1}{2}, \quad a_{k+1} = a_k + \frac{a^2_k}{n} \quad (n > 1, k = 0,1, \ldots, n-1). \] Prove that \[ 1 - \frac{1}{n} < a_n < 1.\]

1979 IMO Longlists, 42

Let a quadratic polynomial $g(x) = ax^2 + bx + c$ be given and an integer $n \ge 1$. Prove that there exists at most one polynomial $f(x)$ of $n$th degree such that $f(g(x)) = g(f(x)).$

EMCC Accuracy Rounds, 2023

[b]p1.[/b] Minseo writes all of the divisors of $1,000,000$ on the whiteboard. She then erases all of the numbers which have the digit $0$ in their decimal representation. How many numbers are left? [b]p2.[/b] $n < 100$ is an odd integer and can be expressed as $3k - 2$ and $5m + 1$ for positive integers $k$ and $m$. Find the sum of all possible values of $n$. [b]p3.[/b] Mr. Pascal is a math teacher who has the license plate $SQUARE$. However, at night, a naughty student scrambles Mr. Pascal’s license plate to $UQRSEA$. The math teacher luckily has an unscrambler that is able to move license plate letters. The unscrambler swaps the positions of any two adjacent letters. What is the minimum number of times Mr. Pascal must use the unscrambler to restore his original license plate? [b]p4.[/b] Find the number of distinct real numbers $x$ which satisfy $x^2 + 4 \lfloor x \rfloor + 4 = 0$. [b]p5.[/b] All four faces of tetrahedron $ABCD$ are acute. The distances from point $D$ to $\overline{BC}$, $\overline{CA}$ and $\overline{AB}$ are all $7$, and the distance from point $D$ to face $ABC$ is $5$. Given that the volume of tetrahedron $ABCD$ is $60$, find the surface area of tetrahedron $ABCD$. [b]p6.[/b] Forrest has a rectangular piece of paper with a width of $5$ inches and a height of $3$ inches. He wants to cut the paper into five rectangular pieces, each of which has a width of $1$ inch and a distinct integer height between $1$ and $5$ inches, inclusive. How many ways can he do so? (One possible way is shown below.) [img]https://cdn.artofproblemsolving.com/attachments/7/3/205afe28276f9df1c6bcb45fff6313c6c7250f.png[/img] [b]p7.[/b] In convex quadrilateral $ABCD$, $AB = CD = 5$, $BC = 4$ and $AD = 8$. If diagonal $\overline{AC}$ bisects $\angle DAB$, find the area of quadrilateral $ABCD$. [b]p8.[/b] Let $x$ and $y$ be real numbers such that $$x + y = x^3 + y^3 + \frac34 = \frac{1}{8xy}.$$ Find the value of $x + y$. [b]p9.[/b] Four blue squares and four red parallelograms are joined edge-to-edge alternately to form a ring of quadrilateral as shown. The areas of three of the red parallelograms are shown. Find the area of the fourth red parallelogram. [img]https://cdn.artofproblemsolving.com/attachments/9/c/911a8d53604f639e2f9bd72b59c7f50e43e258.png[/img] [b]p10.[/b] Define $f(x, n) =\sum_{d|n}\frac{x^n-1}{x^d-1}$ . For how many integers $n$ between $1$ and $2023$ inclusive is $f(3, n)$ an odd integer? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2007 All-Russian Olympiad Regional Round, 9.1

Pete chooses $ 1004$ monic quadratic polynomial $ f_{1},\cdots,f_{1004}$, such that each integer from $ 0$ to $ 2007$ is a root of at least one of them. Vasya considers all equations of the form $ f_{i}\equal{}f_{j}(i\not \equal{}j)$ and computes their roots; for each such root , Pete has to pay to Vasya $ 1$ ruble . Find the least possible value of Vasya's income.

2002 Hungary-Israel Binational, 1

Suppose that positive numbers $x$ and $y$ satisfy $x^{3}+y^{4}\leq x^{2}+y^{3}$. Prove that $x^{3}+y^{3}\leq 2.$

2003 Baltic Way, 5

The sequence $(a_n)$ is defined by $a_1=\sqrt{2}$, $a_2=2$, and $a_{n+1}=a_na_{n-1}^2$ for $n\ge 2$. Prove that for every $n\ge 1$ \[(1+a_1)(1+a_2)\cdots (1+a_n)<(2+\sqrt{2})a_1a_2\cdots a_n. \]

2020 IOM, 4

Tags: algebra
Given three positive real numbers $a,b,c$ such that following holds $a^2=b^2+bc$, $b^2=c^2+ac$ Prove that $\frac{1}{c}=\frac{1}{a}+\frac{1}{b}$.

MOAA Gunga Bowls, 2019

[u]Set 6[/u] [b]p16.[/b] Let $n! = n \times (n - 1) \times ... \times 2 \times 1$. Find the maximum positive integer value of $x$ such that the quotient $\frac{160!}{160^x}$ is an integer. [b]p17.[/b] Let $\vartriangle OAB$ be a triangle with $\angle OAB = 90^o$ . Draw points $C, D, E, F, G$ in its plane so that $$\vartriangle OAB \sim \vartriangle OBC \sim \vartriangle OCD \sim \vartriangle ODE \sim \vartriangle OEF \sim \vartriangle OFG,$$ and none of these triangles overlap. If points $O, A, G$ lie on the same line, then let $x$ be the sum of all possible values of $\frac{OG}{OA }$. Then, $x$ can be expressed in the form $m/n$ for relatively prime positive integers $m, n$. Compute $m + n$. [b]p18.[/b] Let $f(x)$ denote the least integer greater than or equal to $x^{\sqrt{x}}$. Compute $f(1)+f(2)+f(3)+f(4)$. [u]Set 7[/u] The Fibonacci sequence $\{F_n\}$ is defined as $F_0 = 0$, $F_1 = 1$ and $F_{n+2} = F_{n+1} + F_n$ for all integers $n \ge 0$. [b]p19.[/b] Find the least odd prime factor of $(F_3)^{20} + (F_4)^{20} + (F_5)^{20}$. [b]p20.[/b] Let $$S = \frac{1}{F_3F_5}+\frac{1}{F_4F_6}+\frac{1}{F_5F_7}+\frac{1}{F_6F_8}+...$$ Compute $420S$. [b]p21.[/b] Consider the number $$Q = 0.000101020305080130210340550890144... ,$$ the decimal created by concatenating every Fibonacci number and placing a 0 right after the decimal point and between each Fibonacci number. Find the greatest integer less than or equal to $\frac{1}{Q}$. [u]Set 8[/u] [b]p22.[/b] In five dimensional hyperspace, consider a hypercube $C_0$ of side length $2$. Around it, circumscribe a hypersphere $S_0$, so all $32$ vertices of $C_0$ are on the surface of $S_0$. Around $S_0$, circumscribe a hypercube $C_1$, so that $S_0$ is tangent to all hyperfaces of $C_1$. Continue in this same fashion for $S_1$, $C_2$, $S_2$, and so on. Find the side length of $C_4$. [b]p23.[/b] Suppose $\vartriangle ABC$ satisfies $AC = 10\sqrt2$, $BC = 15$, $\angle C = 45^o$. Let $D, E, F$ be the feet of the altitudes in $\vartriangle ABC$, and let $U, V , W$ be the points where the incircle of $\vartriangle DEF$ is tangent to the sides of $\vartriangle DEF$. Find the area of $\vartriangle UVW$. [b]p24.[/b] A polynomial $P(x)$ is called spicy if all of its coefficients are nonnegative integers less than $9$. How many spicy polynomials satisfy $P(3) = 2019$? [i]The next set will consist of three estimation problems.[/i] [u]Set 9[/u] Points will be awarded based on the formulae below. Answers are nonnegative integers that may exceed $1,000,000$. [b]p25.[/b] Suppose a circle of radius $20192019$ has area $A$. Let s be the side length of a square with area $A$. Compute the greatest integer less than or equal to $s$. If $n$ is the correct answer, an estimate of $e$ gives $\max \{ 0, \left\lfloor 1030 ( min \{ \frac{n}{e},\frac{e}{n}\}^{18}\right\rfloor -1000 \}$ points. [b]p26.[/b] Given a $50 \times 50$ grid of squares, initially all white, define an operation as picking a square and coloring it and the four squares horizontally or vertically adjacent to it blue, if they exist. If a square is already colored blue, it will remain blue if colored again. What is the minimum number of operations necessary to color the entire grid blue? If $n$ is the correct answer, an estimate of $e$ gives $\left\lfloor \frac{180}{5|n-e|+6}\right\rfloor$ points. [b]p27.[/b] The sphere packing problem asks what percent of space can be filled with equally sized spheres without overlap. In three dimensions, the answer is $\frac{\pi}{3\sqrt2} \approx 74.05\%$ of space (confirmed as recently as $2017!$), so we say that the packing density of spheres in three dimensions is about $0.74$. In fact, mathematicians have found optimal packing densities for certain other dimensions as well, one being eight-dimensional space. Let d be the packing density of eight-dimensional hyperspheres in eightdimensional hyperspace. Compute the greatest integer less than $10^8 \times d$. If $n$ is the correct answer, an estimate of e gives $\max \left\{ \lfloor 30-10^{-5}|n - e|\rfloor, 0 \right\}$ points. PS. You had better use hide for answers. First sets have be posted [url=https://artofproblemsolving.com/community/c4h2777330p24370124]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2009 China Team Selection Test, 2

Find all the pairs of integers $ (a,b)$ satisfying $ ab(a \minus{} b)\not \equal{} 0$ such that there exists a subset $ Z_{0}$ of set of integers $ Z,$ for any integer $ n$, exactly one among three integers $ n,n \plus{} a,n \plus{} b$ belongs to $ Z_{0}$.

2015 India Regional MathematicaI Olympiad, 2

Let $P(x) = x^2 + ax + b$ be a quadratic polynomial with real coefficients. Suppose there are real numbers $ s \neq t$ such that $P(s) = t$ and $P(t) = s$. Prove that $b-st$ is a root of $x^2 + ax + b - st$.

2003 Romania National Olympiad, 2

Let be five nonzero complex numbers having the same absolute value and such that zero is equal to their sum, which is equal to the sum of their squares. Prove that the affixes of these numbers in the complex plane form a regular pentagon. [i]Daniel Jinga[/i]

2002 Finnish National High School Mathematics Competition, 1

A function $f$ satisfies $f(\cos x) = \cos (17x)$ for every real $x$. Show that $f(\sin x) =\sin (17x)$ for every $x \in \mathbb{R}.$