This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 179

2007 Germany Team Selection Test, 2

Let $ ABCDE$ be a convex pentagon such that \[ \angle BAC \equal{} \angle CAD \equal{} \angle DAE\qquad \text{and}\qquad \angle ABC \equal{} \angle ACD \equal{} \angle ADE. \]The diagonals $BD$ and $CE$ meet at $P$. Prove that the line $AP$ bisects the side $CD$. [i]Proposed by Zuming Feng, USA[/i]

2004 Estonia Team Selection Test, 6

Call a convex polyhedron a [i]footballoid [/i] if it has the following properties. (1) Any face is either a regular pentagon or a regular hexagon. (2) All neighbours of a pentagonal face are hexagonal (a [i]neighbour [/i] of a face is a face that has a common edge with it). Find all possibilities for the number of pentagonal and hexagonal faces of a footballoid.

2003 Belarusian National Olympiad, 8

Given a convex pentagon $ABCDE$ with $AB=BC, CD=DE, \angle ABC=150^o, \angle CDE=30^o, BD=2$. Find the area of $ABCDE$. (I.Voronovich)

1986 IMO, 3

To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers $x,y,z$ respectively, and $y<0$, then the following operation is allowed: $x,y,z$ are replaced by $x+y,-y,z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

2009 Brazil Team Selection Test, 1

Let $A, B, C, D, E$ points in circle of radius r, in that order, such that $AC = BD = CE = r$. The points $H_1, H_2, H_3$ are the orthocenters of the triangles $ACD$, $BCD$ and $BCE$, respectively. Prove that $H_1H_2H_3$ is a right triangle .

2023 OMpD, 2

Let $ABCDE$ be a convex pentagon inscribed in a circle $\Gamma$, such that $AB = BC = CD$. Let $F$ and $G$ be the intersections of $BE$ with $AC$ and of $CE$ with $BD$, respectively. Show that: a) $[ABC] = [FBCG]$ b) $\frac{[EFG]}{[EAD]} = \frac{BC}{AD}$ [b]Note: [/b] $[X]$ denotes the area of polygon $X$.

II Soros Olympiad 1995 - 96 (Russia), 9.3

Is there a convex pentagon in which each diagonal is equal to some side?

2012 China Northern MO, 7

As shown in figure , in the pentagon $ABCDE$, $BC = DE$, $CD \parallel BE$, $AB>AE$. If $\angle BAC = \angle DAE$ and $\frac{AB}{BD}=\frac{AE}{ED}$. Prove that $AC$ bisects the line segment $BE$. [img]https://cdn.artofproblemsolving.com/attachments/3/2/5ce44f1e091786b865ae4319bda56c3ddbb8d7.png[/img]

2020 Malaysia IMONST 1, 12

Tags: pentagon , hexagon
A football is made by sewing together some black and white leather patches. The black patches are regular pentagons of the same size. The white patches are regular hexagons of the same size. Each pentagon is bordered by 5 hexagons. Each hexagons is bordered by $3$ pentagons and $3$ hexagons. We need $12$ pentagons to make one football. How many hexagons are needed to make one football?

2018 Peru IMO TST, 3

Let $ABCDE$ be a convex pentagon such that $AB=BC=CD$, $\angle{EAB}=\angle{BCD}$, and $\angle{EDC}=\angle{CBA}$. Prove that the perpendicular line from $E$ to $BC$ and the line segments $AC$ and $BD$ are concurrent.

1954 Moscow Mathematical Olympiad, 259

A regular star-shaped hexagon is split into $4$ parts. Construct from them a convex polygon. Note: A regular six-pointed star is a figure that is obtained by combining a regular triangle and a triangle symmetrical to it relative to its center

2006 IMO Shortlist, 3

Let $ ABCDE$ be a convex pentagon such that \[ \angle BAC \equal{} \angle CAD \equal{} \angle DAE\qquad \text{and}\qquad \angle ABC \equal{} \angle ACD \equal{} \angle ADE. \]The diagonals $BD$ and $CE$ meet at $P$. Prove that the line $AP$ bisects the side $CD$. [i]Proposed by Zuming Feng, USA[/i]

Estonia Open Junior - geometry, 2019.2.1

A pentagon can be divided into equilateral triangles. Find all the possibilities that the sizes of the angles of this pentagon can be.

1979 Chisinau City MO, 182

Prove that a section of a cube by a plane cannot be a regular pentagon.

Ukraine Correspondence MO - geometry, 2019.8

The symbol of the Olympiad shows $5$ regular hexagons with side $a$, located inside a regular hexagon with side $b$. Find ratio $\frac{a}{b}$. [img]https://1.bp.blogspot.com/-OwyAl75LwiM/YIsThl3SG6I/AAAAAAAANS0/LwHEsAfyZMcqVIS8h_jr_n46OcMJaSTgQCLcBGAsYHQ/s0/2019%2BUkraine%2Bcorrespondence%2B5-12%2Bp8.png[/img]

2020 Ukrainian Geometry Olympiad - April, 5

Given a convex pentagon $ABCDE$, with $\angle BAC = \angle ABE = \angle DEA - 90^o$, $\angle BCA = \angle ADE$ and also $BC = ED$. Prove that $BCDE$ is parallelogram.

1997 Belarusian National Olympiad, 1

Different points $A_1,A_2,A_3,A_4,A_5$ lie on a circle so that $A_1A_2 = A_2A_3 = A_3A_4 =A_4A_5$. Let $A_6$ be the diametrically opposite point to $A_2$, and $A_7$ be the intersection of $A_1A_5$ and $A_3A_6$. Prove that the lines $A_1A_6$ and $A_4A_7$ are perpendicular

1997 German National Olympiad, 6b

An approximate construction of a regular pentagon goes as follows. Inscribe an arbitrary convex pentagon $P_1P_2P_3P_4P_5$ in a circle. Now choose an arror bound $\epsilon > 0$ and apply the following procedure. (a) Denote $P_0 = P_5$ and $P_6 = P_1$ and construct the midpoint $Q_i$ of the circular arc $P_{i-1}P_{i+1}$ containing $P_i$. (b) Rename the vertices $Q_1,...,Q_5$ as $P_1,...,P_5$. (c) Repeat this procedure until the difference between the lengths of the longest and the shortest among the arcs $P_iP_{i+1}$ is less than $\epsilon$. Prove this procedure must end in a finite time for any choice of $\epsilon$ and the points $P_i$.

2007 Abels Math Contest (Norwegian MO) Final, 2

The vertices of a convex pentagon $ABCDE$ lie on a circle $\gamma_1$. The diagonals $AC , CE, EB, BD$, and $DA$ are tangents to another circle $\gamma_2$ with the same centre as $\gamma_1$. (a) Show that all angles of the pentagon $ABCDE$ have the same size and that all edges of the pentagon have the same length. (b) What is the ratio of the radii of the circles $\gamma_1$ and $\gamma_2$? (The answer should be given in terms of integers, the four basic arithmetic operations and extraction of roots only.)

2020 Flanders Math Olympiad, 3

The point $M$ is the center of a regular pentagon $ABCDE$. The point $P$ is an inner point of the line segment $[DM]$. The circumscribed circle of triangle $\vartriangle ABP$ intersects the side $[AE]$ at point $Q$ (different from $A$). The perpendicular from $P$ on $CD$ intersects the side $[AE] $ at point $S$. Prove that $PS$ is the bisector of $\angle APQ$.

Ukraine Correspondence MO - geometry, 2009.7

Let $ABCDE$ be a convex pentagon such that $AE\parallel BC$ and $\angle ADE = \angle BDC$. The diagonals $AC$ and $BE$ intersect at point $F$. Prove that $\angle CBD= \angle ADF$.

1979 IMO Shortlist, 4

We consider a prism which has the upper and inferior basis the pentagons: $A_{1}A_{2}A_{3}A_{4}A_{5}$ and $B_{1}B_{2}B_{3}B_{4}B_{5}$. Each of the sides of the two pentagons and the segments $A_{i}B_{j}$ with $i,j=1,\ldots,5$ is colored in red or blue. In every triangle which has all sides colored there exists one red side and one blue side. Prove that all the 10 sides of the two basis are colored in the same color.

2025 JBMO TST - Turkey, 7

Tags: geometry , pentagon , ratio
$ABCDE$ is a pentagon whose vertices lie on circle $\omega$ where $\angle DAB=90^{\circ}$. Let $EB$ and $AC$ intersect at $F$, $EC$ meet $BD$ at $G$. $M$ is the midpoint of arc $AB$ on $\omega$, not containing $C$. If $FG\parallel DE\parallel CM$ holds, then what is the value of $\frac{|GE|}{|GD|}$?

2013 Regional Competition For Advanced Students, 4

We call a pentagon [i]distinguished [/i] if either all side lengths or all angles are equal. We call it [i]very distinguished[/i] if in addition two of the other parts are equal. i.e. $5$ sides and $2$ angles or $2$ sides and $5$ angles.Show that every very distinguished pentagon has an axis of symmetry.

1969 IMO Shortlist, 50

$(NET 5)$ The bisectors of the exterior angles of a pentagon $B_1B_2B_3B_4B_5$ form another pentagon $A_1A_2A_3A_4A_5.$ Construct $B_1B_2B_3B_4B_5$ from the given pentagon $A_1A_2A_3A_4A_5.$