Found problems: 15925
1992 Austrian-Polish Competition, 8
Let $n\ge 3$ be a given integer. Nonzero real numbers $a_1,..., a_n$ satisfy:
$\frac{-a_1-a_2+a_3+...a_n}{a_1}=\frac{a_1-a_2-a_3+a_4+...a_n}{a_2}=...=\frac{a_1+...+a_{n-2}-a_{n-1}-a_n}{a_{n-1}}=\frac{-a_1+a_2+...+a_{n-1}-a_n}{a_{n}}$
What values can be taken by the product
$\frac{a_2+a_3+...a_n}{a_1}\cdot \frac{a_1+a_3+a_4+...a_n}{a_2}\cdot ...\cdot \frac{+a_1+a_2+...+a_{n-1}}{a_{n}}$ ?
2025 Romania National Olympiad, 3
Let $n \geq 2$ be a positive integer. Consider the following equation: \[ \{x\}+\{2x\}+ \dots + \{nx\} = \lfloor x \rfloor + \lfloor 2x \rfloor + \dots + \lfloor 2nx \rfloor\]
a) For $n=2$, solve the given equation in $\mathbb{R}$.
b) Prove that, for any $n \geq 2$, the equation has at most $2$ real solutions.
2019 IMO Shortlist, A4
Let $n\geqslant 2$ be a positive integer and $a_1,a_2, \ldots ,a_n$ be real numbers such that \[a_1+a_2+\dots+a_n=0.\]
Define the set $A$ by
\[A=\left\{(i, j)\,|\,1 \leqslant i<j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\}\]
Prove that, if $A$ is not empty, then
\[\sum_{(i, j) \in A} a_{i} a_{j}<0.\]
2016 India PRMO, 13
Find the total number of times the digit ‘$2$’ appears in the set of integers $\{1,2,..,1000\}$. For example, the digit ’$2$’ appears twice in the integer $229$.
2002 National High School Mathematics League, 8
Consider the expanded form of $\left(x+\frac{1}{2\sqrt[4]{x}}\right)^n$, put all items in number (from high power to low power). If the coefficients of the first three items are arithmetic sequence, then the number of items with an integral power is________.
2020 Costa Rica - Final Round, 3
Let $x, y, z \in R^+$. Prove that
$$\frac{x}{x +\sqrt{(x + y)(x + z)}}+\frac{y}{y +\sqrt{(y + z)(y + x)}}+\frac{z}{z +\sqrt{(x + z)(z + y)}} \le 1$$
2001 Hong kong National Olympiad, 3
Let $k\geq 4$ be an integer number. $P(x)\in\mathbb{Z}[x]$ such that $0\leq P(c)\leq k$ for all $c=0,1,...,k+1$. Prove that $P(0)=P(1)=...=P(k+1)$.
1995 Poland - First Round, 9
A polynomial with integer coefficients when divided by $x^2-12x+11$ gives the remainder $990x-889$. Prove that the polynomial has no integer roots.
2003 Swedish Mathematical Competition, 3
Find all real solutions $x$ of the equation $$\lfloor x^2-2 \rfloor +2 \lfloor x \rfloor = \lfloor x \rfloor ^2. $$
.
2006 Czech-Polish-Slovak Match, 2
There are $n$ children around a round table. Erika is the oldest among them and she has $n$ candies, while no other child has any candy. Erika decided to distribute the candies according to the following rules. In every round, she chooses a child with at least two candies and the chosen child sends a candy to each of his/her two neighbors. (So in the first round Erika must choose herself). For which $n \ge 3$ is it possible to end the distribution after a finite number of rounds with every child having exactly one candy?
2024 May Olympiad, 1
Determine all the two-digit numbers that satisfy the following condition: if we multiply their two digits, the result is equal to half the number. For example, $24$ does not satisfy the condition, because $2 \times 4 = 8$ and $8$ is not half of $24$.
2016 Iran MO (2nd Round), 1
If $0<a\leq b\leq c$ prove that
$$\frac{(c-a)^2}{6c}\leq \frac{a+b+c}{3}-\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$$
PEN H Problems, 16
Find all pairs $(a,b)$ of different positive integers that satisfy the equation $W(a)=W(b)$, where $W(x)=x^{4}-3x^{3}+5x^{2}-9x$.
EMCC Guts Rounds, 2018
[u]Round 5[/u]
[b]p13.[/b] Find all ordered pairs of real numbers $(x, y)$ satisfying the following equations:
$$\begin{cases} \dfrac{1}{xy} + \dfrac{y}{x}= 2 \\ \dfrac{1}{xy^2} + \dfrac{y^2}{x} = 7 \end{cases}$$
[b]p14.[/b] An egg plant is a hollow prism of negligible thickness, with height $2$ and an equilateral triangle base. Inside the egg plant, there is enough space for four spherical eggs of radius $1$. What is the minimum possible volume of the egg plant?
[b]p15.[/b] How many ways are there for Farmer James to color each square of a $2\times 6$ grid with one of the three colors eggshell, cream, and cornsilk, so that no two adjacent squares are the same color?
[u]Round 6[/u]
[b]p16.[/b] In a triangle $ABC$, $\angle A = 45^o$, and let $D$ be the foot of the perpendicular from $A$ to segment $BC$. $BD = 2$ and $DC = 4$. Let $E$ be the intersection of the line $AD$ and the perpendicular line from $B$ to line $AC$. Find the length of $AE$.
[b]p17.[/b] Find the largest positive integer $n$ such that there exists a unique positive integer $m$ satisfying
$$\frac{1}{10} \le \frac{m}{n} \le \frac19$$
[b]p18.[/b] How many ordered pairs $(A,B)$ of positive integers are there such that $A+B = 10000$ and the number $A^2 + AB + B$ has all distinct digits in base $10$?
[u]Round 7[/u]
[b]p19.[/b] Pentagon $JAMES$ satisfies $JA = AM = ME = ES = 2$. Find the maximum possible area of $JAMES$.
[b]p20.[/b] $P(x)$ is a monic polynomial (a polynomial with leading coecient $1$) of degree $4$, such that $P(2^n+1) =8^n + 1$ when $n = 1, 2, 3, 4$. Find the value of $P(1)$.
[b]p21[/b]. PEAcock and Zombie Hen Hao are at the starting point of a circular track, and start running in the same direction at the same time. PEAcock runs at a constant speed that is $2018$ times faster than Zombie Hen Hao's constant speed. At some point in time, Farmer James takes a photograph of his two favorite chickens, and he notes that they are at different points along the track. Later on, Farmer James takes a second photograph, and to his amazement, PEAcock and Zombie Hen Hao have now swapped locations from the first photograph! How many distinct possibilities are there for PEAcock and Zombie Hen Hao's positions in Farmer James's first photograph? (Assume PEAcock and Zombie Hen Hao have negligible size.)
[u]Round 8[/u]
[b]p22.[/b] How many ways are there to scramble the letters in $EGGSEATER$ such that no two consecutive letters are the same?
[b]p23.[/b] Let $JAMES$ be a regular pentagon. Let $X$ be on segment $JA$ such that $\frac{JX}{XA} = \frac{XA}{JA}$ . There exists a unique point $P$ on segment $AE$ such that $XM = XP$. Find the ratio $\frac{AE}{PE}$ .
[b]p24.[/b] Find the minimum value of the function $$f(x) = \left|x - \frac{1}{x} \right|+ \left|x - \frac{2}{x} \right| + \left|x - \frac{3}{x} \right|+... + \left|x - \frac{9}{x} \right|+ \left|x - \frac{10}{x} \right|$$ over all nonzero real numbers $x$.
PS. You should use hide for answers. Rounds 1-4 have been posted [url=https://artofproblemsolving.com/community/c3h2949191p26406082]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2023 Taiwan TST Round 2, A
Find all functions $f : \mathbb{R} \to \mathbb{R}$, such that
$$f\left(xy+f(y)\right)f(x)=x^2f(y)+f(xy)$$
for all $x,y \in \mathbb{R}$
[i]Proposed by chengbilly[/i]
2018 Korea Junior Math Olympiad, 6
Let there be a figure with $9$ disks and $11$ edges, as shown below.
We will write a real number in each and every disk. Then, for each edge, we will write the square of the difference between the two real numbers written in the two disks that the edge connects. We must write $0$ in disk $A$, and $1$ in disk $I$. Find the minimum sum of all real numbers written in $11$ edges.
2017 ISI Entrance Examination, 3
Suppose $f:\mathbb{R} \to \mathbb{R}$ is a function given by
$$f(x) =\begin{cases} 1 & \mbox{if} \ x=1 \\ e^{(x^{10}-1)}+(x-1)^2\sin\frac1{x-1} & \mbox{if} \ x\neq 1\end{cases}$$
(a) Find $f'(1)$
(b) Evaluate $\displaystyle \lim_{u\to\infty} \left[100u-u\sum_{k=1}^{100} f\left(1+\frac{k}{u}\right)\right]$.
1986 IMO Longlists, 61
Given a positive integer $n$, find the greatest integer $p$ with the property that for any function $f : \mathbb P(X) \to C$, where $X$ and $C$ are sets of cardinality $n$ and $p$, respectively, there exist two distinct sets $A,B \in \mathbb P(X)$ such that $f(A) = f(B) = f(A \cup B)$. ($\mathbb P(X)$ is the family of all subsets of $X$.)
2020-IMOC, A6
$\definecolor{A}{RGB}{255,0,0}\color{A}\fbox{A6.}$ Let $ P (x)$ be a polynomial with real coefficients such that $\deg P \ge 3$ is an odd integer. Let $f : \mathbb{R}\rightarrow\mathbb{Z}$ be a function such that
$$\definecolor{A}{RGB}{0,0,200}\color{A}\forall_{x\in\mathbb{R}}\ f(P(x)) = P(f(x)).$$
$\definecolor{A}{RGB}{255,150,0}\color{A}\fbox{(a)}$ Prove that the range of $f$ is finite.
$\definecolor{A}{RGB}{255,150,0}\color{A}\fbox{(b)}$ Show that for any positive integer $n$, there exist $P$, $f$ that satisfies the above condition and also that the range of $f$ has cardinality $n$.
[i]Proposed by [/i][b][color=#419DAB]ltf0501[/color][/b].
[color=#3D9186]#1735[/color]
2018 Puerto Rico Team Selection Test, 6
Starting from an equilateral triangle with perimeter $P_0$, we carry out the following iterations: the first iteration consists of dividing each side of the triangle into three segments of equal length, construct an exterior equilateral triangle on each of the middle segments, and then remove these segments (bases of each new equilateral triangle formed). The second iteration consists of apply the same process of the first iteration on each segment of the resulting figure after the first iteration. Successively, follow the other iterations. Let $A_n$ be the area of the figure after the $n$- th iteration, and let $P_n$ the perimeter of the same figure. If $A_n = P_n$, find the value of $P_0$ (in its simplest form).
2011 HMNT, 10
Let $r_1, r_2, \cdots, r_7$ be the distinct complex roots of the polynomial $P(x) = x^7 - 7$ Let
\[K = \prod_{1 \leq i < j \leq 7} (r_i + r_j)\]
that is, the product of all the numbers of the form $r_i + r_j$, where $i$ and $j$ are integers for which $1 \leq i < j \leq 7$. Determine the value of $K^2$.
2012 India PRMO, 16
Let $N$ be the set of natural numbers. Suppose $f: N \to N$ is a function satisfying the following conditions:
(a) $f(mn) =f(m)f(n)$
(b) $f(m) < f(n)$ if $m < n$
(c) $f(2) = 2$
What is the sum of $\Sigma_{k=1}^{20}f(k)$?
2024 Czech and Slovak Olympiad III A, 5
Let $(a_k)^{\infty}_{k=0}$ be a sequence of real numbers such that if $k$ is a non-negative integer, then
$$a_{k+1} = 3a_k - \lfloor 2a_k \rfloor - \lfloor a_k \rfloor.$$
Definitely all positive integers $n$ such that if $a_0 = 1/n$, then this sequence is constant after a certain term.
2006 Turkey MO (2nd round), 3
Find all positive integers $n$ for which all coefficients of polynomial $P(x)$ are divisible by $7,$ where
\[P(x) = (x^2 + x + 1)^n - (x^2 + 1)^n - (x + 1)^n - (x^2 + x)^n + x^{2n} + x^n + 1.\]
2022 Mid-Michigan MO, 7-9
[b]p1.[/b] Find the unknown angle $a$ of the triangle inscribed in the square.
[img]https://cdn.artofproblemsolving.com/attachments/b/1/4aab5079dea41637f2fa22851984f886f034df.png[/img]
[b]p2.[/b] Draw a polygon in the plane and a point outside of it with the following property: no edge of the polygon is completely visible from that point (in other words, the view is obstructed by some other edge).
[b]p3.[/b] This problem has two parts. In each part, $2022$ real numbers are given, with some additional property.
(a) Suppose that the sum of any three of the given numbers is an integer. Show that the total sum of the $2022$ numbers is also an integer.
(b) Suppose that the sum of any five of the given numbers is an integer. Show that 5 times the total sum of the $2022$ numbers is also an integer, but the sum itself is not necessarily an integer.
[b]p4.[/b] Replace stars with digits so that the long multiplication in the example below is correct.
[img]https://cdn.artofproblemsolving.com/attachments/9/7/229315886b5f122dc0675f6d578624e83fc4e0.png[/img]
[b]p5.[/b] Five nodes of a square grid paper are marked (called marked points). Show that there are at least two marked points such that the middle point of the interval connecting them is also a node of the square grid paper
[b]p6.[/b] Solve the system $$\begin{cases} \dfrac{xy}{x+y}=\dfrac{8}{3} \\ \dfrac{yz}{y+z}=\dfrac{12}{5} \\\dfrac{xz}{x+z}=\dfrac{24}{7} \end{cases}$$
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].