Found problems: 15925
2020 Serbian Mathematical Olympiad, Problem 1
Find all monic polynomials $P(x)$ such that the polynomial $P(x)^2-1$ is divisible by the polynomial $P(x+1)$.
2004 Czech and Slovak Olympiad III A, 2
Consider all words containing only letters $A$ and $B$. For any positive integer $n$, $p(n)$ denotes the number of all $n$-letter words without four consecutive $A$'s or three consecutive $B$'s. Find the value of the expression
\[\frac{p(2004)-p(2002)-p(1999)}{p(2001)+p(2000)}.\]
2008 Hong kong National Olympiad, 1
Let $ f(x) \equal{} c_m x^m \plus{} c_{m\minus{}1} x^{m\minus{}1} \plus{}...\plus{} c_1 x \plus{} c_0$, where each $ c_i$ is a non-zero integer. Define a sequence $ \{ a_n \}$ by $ a_1 \equal{} 0$ and $ a_{n\plus{}1} \equal{} f(a_n)$ for all positive integers $ n$.
(a) Let $ i$ and $ j$ be positive integers with $ i<j$. Show that $ a_{j\plus{}1} \minus{} a_j$ is a multiple of $ a_{i\plus{}1} \minus{} a_i$.
(b) Show that $ a_{2008} \neq 0$
2007 IMO Shortlist, 7
Let $ n$ be a positive integer. Consider
\[ S \equal{} \left\{ (x,y,z) \mid x,y,z \in \{ 0, 1, \ldots, n\}, x \plus{} y \plus{} z > 0 \right \}
\]
as a set of $ (n \plus{} 1)^{3} \minus{} 1$ points in the three-dimensional space. Determine the smallest possible number of planes, the union of which contains $ S$ but does not include $ (0,0,0)$.
[i]Author: Gerhard Wöginger, Netherlands [/i]
2013 China Team Selection Test, 2
Find the greatest positive integer $m$ with the following property:
For every permutation $a_1, a_2, \cdots, a_n,\cdots$ of the set of positive integers, there exists positive integers $i_1<i_2<\cdots <i_m$ such that $a_{i_1}, a_{i_2}, \cdots, a_{i_m}$ is an arithmetic progression with an odd common difference.
2019 Purple Comet Problems, 22
Let $a$ and $b$ positive real numbers such that $(65a^2 + 2ab + b^2)(a^2 + 8ab + 65b^2) = (8a^2 + 39ab + 7b^2)^2$. Then one possible value of $\frac{a}{b}$ satises $2 \left(\frac{a}{b}\right) = m +\sqrt{n}$, where $m$ and $n$ are positive integers. Find $m + n$.
1978 IMO Longlists, 31
Let the polynomials
\[P(x) = x^n + a_{n-1}x^{n-1 }+ \cdots + a_1x + a_0,\]
\[Q(x) = x^m + b_{m-1}x^{m-1} + \cdots + b_1x + b_0,\]
be given satisfying the identity $P(x)^2 = (x^2 - 1)Q(x)^2 + 1$. Prove the identity
\[P'(x) = nQ(x).\]
2007 Moldova National Olympiad, 11.4
The function $f: \mathbb{R}\rightarrow\mathbb{R}$ satisfies $f(\textrm{cot}x)=\sin2x+\cos2x$, for any $x\in(0,\pi)$. Find the minimum and maximum value of $g: [-1;1]\rightarrow\mathbb{R}$, $g(x)=f(x)\cdot f(1-x)$.
2020 LIMIT Category 2, 3
Given that the equation $(m^2-12)x^4-8x^2-4=0$ has no real roots, then the largest value of $m$ is $p\sqrt{q}$, where $p$ and $q$ are natural numbers, $q$ is square-free. Determine $p+q$.
(A)$4$
(B)$5$
(C)$3$
(D)$6$
2013 Balkan MO Shortlist, A2
Let $a, b, c$ and $d$ are positive real numbers so that $abcd = \frac14$. Prove that holds
$$\left( 16ac +\frac{a}{c^2b}+\frac{16c}{a^2d}+\frac{4}{ac}\right)\left( bd +\frac{b}{256d^2c}+\frac{d}{b^2a}+\frac{1}{64bd}\right) \ge \frac{81}{4}$$
When does the equality hold?
2008 IberoAmerican Olympiad For University Students, 2
Prove that for each natural number $n$ there is a polynomial $f$ with real coefficients and degree $n$ such that $ p(x)=f(x^2-1)$ is divisible by $f(x)$ over the ring $\mathbb{R}[x]$.
2023 Romania National Olympiad, 1
Determine all sequences of equal ratios of the form
\[
\frac{a_1}{a_2} = \frac{a_3}{a_4} = \frac{a_5}{a_6} = \frac{a_7}{a_8}
\]
which simultaneously satisfy the following conditions:
$\bullet$ The set $\{ a_1, a_2, \ldots , a_8 \}$ represents all positive divisors of $24$.
$\bullet$ The common value of the ratios is a natural number.
2022 Princeton University Math Competition, 11
For the function $$ g(a) = \underbrace{\max}_{x\in R} \left\{ \cos x + \cos \left(x + \frac{\pi}{6} \right)+ \cos \left(x + \frac{\pi}{4} \right) + cos(x + a) \right\},$$ let $b \in R$ be the input that maximizes $g$. If $\cos^2 b = \frac{m+\sqrt{n}+\sqrt{p}-\sqrt{q}}{24}$ for positive integers $m, n, p, q$, find $m + n + p + q$.
2001 Saint Petersburg Mathematical Olympiad, 10.2
The computer "Intel stump-V" can do only one operation with a number: add 1 to it, then rearrange all the zeros in the decimal representation to the end and rearrenge the left digits in any order. (For example from 1004 you could get 1500 or 5100). The number $12345$ was written on the computer and after performing 400 operations, the number 100000 appeared on the screen. How many times has a number with the last digit 0 appeared on the screen?
2021 HMIC, 3
Let $A$ be a set of $n\ge2$ positive integers, and let $\textstyle f(x)=\sum_{a\in A}x^a$. Prove that there exists a complex number $z$ with $\lvert z\rvert=1$ and $\lvert f(z)\rvert=\sqrt{n-2}$.
2006 District Olympiad, 4
For each positive integer $n\geq 2$ we denote with $p(n)$ the largest prime number less than or equal to $n$, and with $q(n)$ the smallest prime number larger than $n$. Prove that \[ \sum^n_{k=2} \frac 1{p(k)q(k)} < \frac 12. \]
2010 Princeton University Math Competition, 8
The expression $\sin2^\circ\sin4^\circ\sin6^\circ\cdots\sin90^\circ$ is equal to $p\sqrt{5}/2^{50}$, where $p$ is an integer. Find $p$.
1974 All Soviet Union Mathematical Olympiad, 200
a) Prove that you can rearrange the numbers $1, 2, ... , 32$ in such a way, that for every couple of numbers none of the numbers between them will equal their arithmetic mean.
b) Can you rearrange the numbers $1, 2, ... , 100$ in such a way, that for every couple of numbers none of the numbers between them will equal their arithmetic mean?
2002 India IMO Training Camp, 17
Let $n$ be a positive integer and let $(1+iT)^n=f(T)+ig(T)$ where $i$ is the square root of $-1$, and $f$ and $g$ are polynomials with real coefficients. Show that for any real number $k$ the equation $f(T)+kg(T)=0$ has only real roots.
2004 Indonesia Juniors, day 1
p1. Known points $A (-1.2)$, $B (0,2)$, $C (3,0)$, and $D (3, -1)$ as seen in the following picture.
Determine the measure of the angle $AOD$ .
[img]https://cdn.artofproblemsolving.com/attachments/f/2/ca857aaf54c803db34d8d52505ef9a80e7130f.png[/img]
p2. Determine all prime numbers $p> 2$ until $p$ divides $71^2 - 37^2 - 51$.
p3. A ball if dropped perpendicular to the ground from a height then it will bounce back perpendicular along the high third again, down back upright and bouncing back a third of its height, and next. If the distance traveled by the ball when it touches the ground the fourth time is equal to $106$ meters. From what height is the ball was dropped?
p4. The beam $ABCD.EFGH$ is obtained by pasting two unit cubes $ABCD.PQRS$ and $PQRS.EFGH$. The point K is the midpoint of the edge $AB$, while the point $L$ is the midpoint of the edge $SH$. What is the length of the line segment $KL$?
p5. How many integer numbers are no greater than $2004$, with remainder $1$ when divided by $2$, with remainder $2$ when divided by $3$, with remainder $3$ when divided by $4$, and with remainder $4$ when divided by $5$?
2004 Regional Competition For Advanced Students, 4
The sequence $ < x_n >$ is defined through:
$ x_{n \plus{} 1} \equal{} \left(\frac {n}{2004} \plus{} \frac {1}{n}\right)x_n^2 \minus{} \frac {n^3}{2004} \plus{} 1$ for $ n > 0$
Let $ x_1$ be a non-negative integer smaller than $ 204$ so that all members of the sequence are non-negative integers.
Show that there exist infinitely many prime numbers in this sequence.
2005 China National Olympiad, 4
The sequence $\{a_n\}$ is defined by: $a_1=\frac{21}{16}$, and for $n\ge2$,\[ 2a_n-3a_{n-1}=\frac{3}{2^{n+1}}. \]Let $m$ be an integer with $m\ge2$. Prove that: for $n\le m$, we have\[ \left(a_n+\frac{3}{2^{n+3}}\right)^{\frac{1}{m}}\left(m-\left(\frac{2}{3}\right)^{{\frac{n(m-1)}{m}}}\right)<\frac{m^2-1}{m-n+1}. \]
2016 Serbia National Math Olympiad, 2
Let $n $ be a positive integer. Let $f $ be a function from nonnegative integers to themselves. Let $f (0,i)=f (i,0)=0$, $f (1, 1)=n $, and $ f(i, j)= [\frac {f(i-1,j)}{2}]+ [\frac {f(i, j-1)}{2}] $ for positive integers $i, j$ such that $i*j>1$. Find the number of pairs $(i,j) $ such that $f (i, j) $ is an odd number.( $[x]$ is the floor function).
Dumbest FE I ever created, 6.
Find all non decreasing functions or non increasing function $f \colon \mathbb{R} \to \mathbb{R}$ such that for all $x,y \in \mathbb{R}$
$$ f(x+f(y))=f(x)+f(y) \text{ or } f(f(f(x)))+y$$ .
Taiwan TST 2015 Round 1, 2
Find all functions $f:\mathbb{Q}\rightarrow\mathbb{R} \setminus \{ 0 \}$ such that
\[(f(x))^2f(2y)+(f(y))^2f(2x)=2f(x)f(y)f(x+y)\]
for all $x,y\in\mathbb{Q}$