Found problems: 15925
2022 Nigerian Senior MO Round 2, Problem 4
Define sequence $(a_{n})_{n=1}^{\infty}$ by $a_1=a_2=a_3=1$ and $a_{n+3}=a_{n+1}+a_{n}$ for all $n \geq 1$. Also, define sequence $(b_{n})_{n=1}^{\infty}$ by $b_1=b_2=b_3=b_4=b_5=1$ and $b_{n+5}=b_{n+4}+b_{n}$ for all $n \geq 1$. Prove that $\exists N \in \mathbb{N}$ such that $a_n = b_{n+1} + b_{n-8}$ for all $n \geq N$.
2008 Princeton University Math Competition, B4
Find the product of the minimum and maximum values of $\frac{3x+1}{9x^2+6x+2}$.
2008 China Team Selection Test, 2
Let $ x,y,z$ be positive real numbers, show that $ \frac {xy}{z} \plus{} \frac {yz}{x} \plus{} \frac {zx}{y} > 2\sqrt [3]{x^3 \plus{} y^3 \plus{} z^3}.$
2023 Assara - South Russian Girl's MO, 7
Given an increasing sequence of different natural numbers $a_1 < a_2 < a_3 < ... < a_n$ such that for any two distinct numbers in this sequence their sum is not divisible by $10$. It is known that $a_n = 2023$.
a) Can $n$ be greater than $800$?
b) What is the largest possible value of $n$?
c) For the value $n$ found in question b), find the number of such sequences with $a_n = 2023$.
1997 Croatia National Olympiad, Problem 2
Prove that for every real number $x$ and positive integer $n$
$$|\cos x|+|\cos2x|+|\cos2^2x|+\ldots+|\cos2^nx|\ge\frac n{2\sqrt2}.$$
2018 Korea National Olympiad, 6
Let $n \ge 3$ be a positive integer. For every set $S$ with $n$ distinct positive integers, prove that there exists a bijection $f: \{1,2, \cdots n\} \rightarrow S$ which satisfies the following condition.
For all $1 \le i < j < k \le n$, $f(j)^2 \neq f(i) \cdot f(k)$.
OMMC POTM, 2023 11
Consider an infinite strictly increasing sequence of positive integers $a_1$, $a_2$,$...$ where for any real number $C$, there exists an integer $N$ where $a_k >Ck$ for any $k >N$. Do there necessarily exist inifinite many indices $k$ where $2a_k <a_{k-1}+a_{k+1}$ for any $0<i<k$?
2019 CMIMC, 6
Let $a, b$ and $c$ be the distinct solutions to the equation $x^3-2x^2+3x-4=0$. Find the value of
$$\frac{1}{a(b^2+c^2-a^2)}+\frac{1}{b(c^2+a^2-b^2)}+\frac{1}{c(a^2+b^2-c^2)}.$$
Oliforum Contest II 2009, 3
Find all $ (x,y,z) \in \mathbb{Z}^3$ such that $ x^3 \minus{} 5x \equal{} 1728^{y}\cdot 1733^z \minus{} 17$.
[i](Paolo Leonetti)[/i]
2010 Math Prize For Girls Problems, 20
What is the value of the sum
\[
\sum_z \frac{1}{{\left|1 - z\right|}^2} \, ,
\]
where $z$ ranges over all 7 solutions (real and nonreal) of the equation $z^7 = -1$?
Mid-Michigan MO, Grades 10-12, 2008
[b]p1.[/b] A square is tiled by smaller squares as shown in the figure. Find the area of the black square in the middle if the perimeter of the square $ABCD$ is $14$ cm.
[img]https://cdn.artofproblemsolving.com/attachments/1/1/0f80fc5f0505fa9752b5c9e1c646c49091b4ca.png[/img]
[b]p2.[/b] If $a, b$, and $c$ are numbers so that $a + b + c = 0$ and $a^2 + b^2 + c^2 = 1$. Compute $a^4 + b^4 + c^4$.
[b]p3.[/b] A given fraction $\frac{a}{b}$ ($a, b$ are positive integers, $a \ne b$) is transformed by the following rule: first, $1$ is added to both the numerator and the denominator, and then the numerator and the denominator of the new fraction are each divided by their greatest common divisor (in other words, the new fraction is put in simplest form). Then the same transformation is applied again and again. Show that after some number of steps the denominator and the numerator differ exactly by $1$.
[b]p4.[/b] A goat uses horns to make the holes in a new $30\times 60$ cm large towel. Each time it makes two new holes. Show that after the goat repeats this $61$ times the towel will have at least two holes whose distance apart is less than $6$ cm.
[b]p5.[/b] You are given $555$ weights weighing $1$ g, $2$ g, $3$ g, $...$ , $555$ g. Divide these weights into three groups whose total weights are equal.
[b]p6.[/b] Draw on the regular $8\times 8$ chessboard a circle of the maximal possible radius that intersects only black squares (and does not cross white squares). Explain why no larger circle can satisfy the condition.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1999 Swedish Mathematical Competition, 1
Solve $|||||x^2-x-1| - 2| - 3| - 4| - 5| = x^2 + x - 30$.
2016 Postal Coaching, 4
Suppose $n$ is a perfect square. Consider the set of all numbers which is the product of two numbers, not necessarily distinct, both of which are at least $n$. Express the $n-$th smallest number in this set in terms of $n$.
2019 Nigerian Senior MO Round 3, 2
Let $abc$ be real numbers satisfying $ab+bc+ca=1$. Show that $\frac{|a-b|}{|1+c^2|}$ + $\frac{|b-c|}{|1+a^2|}$ $>=$ $\frac{|c-a|}{|1+b^2|}$
2017 Federal Competition For Advanced Students, 1
Determine all polynomials $P(x) \in \mathbb R[x]$ satisfying the following two conditions :
(a) $P(2017) = 2016$ and
(b) $(P(x) + 1)^2 = P(x^2 + 1)$ for all real numbers $x$.
[i]proposed by Walther Janous[/i]
2005 IMO Shortlist, 3
Let $ a$, $ b$, $ c$, $ d$, $ e$, $ f$ be positive integers and let $ S = a+b+c+d+e+f$.
Suppose that the number $ S$ divides $ abc+def$ and $ ab+bc+ca-de-ef-df$. Prove that $ S$ is composite.
1989 AMC 12/AHSME, 15
Hi guys,
I was just reading over old posts that I made last year ( :P ) and saw how much the level of Getting Started became harder. To encourage more people from posting, I decided to start a Problem of the Day. This is how I'll conduct this:
1. In each post (not including this one since it has rules, etc) everyday, I'll post the problem. I may post another thread after it to give hints though.
2. Level of problem.. This is VERY important. All problems in this thread will be all AHSME or problems similar to this level. No AIME. Some AHSME problems, however, that involve tough insight or skills will not be posted. The chosen problems will be usually ones that everyone can solve after working. Calculators are allowed when you solve problems but it is NOT necessary.
3. Response.. All you have to do is simply solve the problem and post the solution. There is no credit given or taken away if you get the problem wrong. This isn't like other threads where the number of problems you get right or not matters. As for posting, post your solutions here in this thread. Do NOT PM me. Also, here are some more restrictions when posting solutions:
A. No single answer post. It doesn't matter if you put hide and say "Answer is ###..." If you don't put explanation, it simply means you cheated off from some other people. I've seen several posts that went like "I know the answer" and simply post the letter. What is the purpose of even posting then? Huh?
B. Do NOT go back to the previous problem(s). This causes too much confusion.
C. You're FREE to give hints and post different idea, way or answer in some cases in problems. If you see someone did wrong or you don't understand what they did, post here. That's what this thread is for.
4. Main purpose.. This is for anyone who visits this forum to enjoy math. I rememeber when I first came into this forum, I was poor at math compared to other people. But I kindly got help from many people such as JBL, joml88, tokenadult, and many other people that would take too much time to type. Perhaps without them, I wouldn't be even a moderator in this forum now. This site clearly made me to enjoy math more and more and I'd like to do the same thing. That's about the rule.. Have fun problem solving!
Next post will contain the Day 1 Problem. You can post the solutions until I post one. :D
2025 Kyiv City MO Round 1, Problem 5
Determine the largest possible constant \( C \) such that for any positive real numbers \( x, y, z \), which are the sides of a triangle, the following inequality holds:
\[
\frac{xy}{x^2 + y^2 + xz} + \frac{yz}{y^2 + z^2 + yx} + \frac{zx}{z^2 + x^2 + zy} \geq C.
\]
[i]Proposed by Vadym Solomka[/i]
III Soros Olympiad 1996 - 97 (Russia), 11.1
Solve the equation: $$x \cdot 2^{\dfrac{1}{x}}+\dfrac{1}{x} \cdot 2^x=4$$
2021 Iran RMM TST, 3
We call a polynomial $P(x)=a_dx^d+...+a_0$ of degree $d$ [i]nice[/i] if
$$\frac{2021(|a_d|+...+|a_0|)}{2022}<max_{0 \le i \le d}|a_i|$$
Initially Shayan has a sequence of $d$ distinct real numbers; $r_1,...,r_d \neq \pm 1$. At each step he choose a positive integer $N>1$ and raises the $d$ numbers he has to the exponent of $N$, then delete the previous $d$ numbers and constructs a monic polynomial of degree $d$ with these number as roots, then examine whether it is nice or not. Prove that after some steps, all the polynomials that shayan produces would be nice polynomials
Proposed by [i]Navid Safaei[/i]
2018 CHMMC (Fall), 9
Say that a function $f : \{1, 2, . . . , 1001\} \to Z$ is [i]almost [/i] polynomial if there is a polynomial $p(x) = a_{200}x^{200} +... + a_1x + a_0$ such that each an is an integer with $|a_n| \le 201$, and such that $|f(x) - p(x)| \le 1$ for all $x \in \{1, 2, . . . , 1001\}$. Let $N$ be the number of almost polynomial functions. Compute the remainder upon dividing $N$ by $199$.
2006 Thailand Mathematical Olympiad, 5
Let $f : Z_{\ge 0} \to Z_{\ge 0}$ satisfy the functional equation $$f(m^2 + n^2) =(f(m) - f(n))^2 + f(2mn)$$ for all nonnegative integers $m, n$. If $8f(0) + 9f(1) = 2006$, compute $f(0)$.
1999 Moldova Team Selection Test, 2
Let $a,b,c$ be positive numbers. Prove that a triangle with sides $a,b,c$ exists if and only if the system of equations
$$\begin{cases}\dfrac{y}{z}+\dfrac{z}{y}=\dfrac{a}{x} \\ \\ \dfrac{z}{x}+\dfrac{x}{z}=\dfrac{b}{y} \\ \\ \dfrac{x}{y}+\dfrac{y}{x}=\dfrac{c}{z}\end{cases}$$ has a real solution.
2000 All-Russian Olympiad Regional Round, 11.5
For non-negative numbers $x$ and $y$ not exceeding $1$, prove that
$$\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}} \le \frac{2}{\sqrt{1 + xy}},$$
2023 Greece Junior Math Olympiad, 1
Solve in real numbers the system:
$$\begin{cases} a+b+c=0 \\ ab^3+bc^3+ca^3=0 \end{cases}$$