This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2006 Federal Competition For Advanced Students, Part 2, 2

Find all monotonous functions $ f: \mathbb{R} \to \mathbb{R}$ that satisfy the following functional equation: \[f(f(x)) \equal{} f( \minus{} f(x)) \equal{} f(x)^2.\]

2005 Abels Math Contest (Norwegian MO), 4a

Show that for all positive real numbers $a, b$ and $c$, the inequality $(a+b)(a+c)\ge 2\sqrt{abc(a+b+c)}$ is true.

2010 Contests, 2

Let $r$ and $s$ be positive integers. Define $a_0 = 0$, $a_1 = 1$, and $a_n = ra_{n-1} + sa_{n-2}$ for $n \geq 2$. Let $f_n = a_1a_2\cdots a_n$. Prove that $\displaystyle\frac{f_n}{f_kf_{n-k}}$ is an integer for all integers $n$ and $k$ such that $0 < k < n$. [i]Evan O' Dorney.[/i]

2018 South East Mathematical Olympiad, 2

Tags: algebra
Suppose that $a$ is real number. Sequence $a_1,a_2,a_3,....$ satisfies $$a_1=a, a_{n+1} = \begin{cases} a_n - \frac{1}{a_n}, & a_n\ne 0 \\ 0, & a_n=0 \end{cases} (n=1,2,3,..)$$ Find all possible values of $a$ such that $|a_n|<1$ for all positive integer $n$.

1995 India Regional Mathematical Olympiad, 7

Show that for any real number $x$: \[ x^2 \sin{x} + x \cos{x} + x^2 + \frac{1}{2} > 0 . \]

2015 Moldova Team Selection Test, 1

Find all polynomials $P(x)$ with real coefficients which satisfies \\ $P(2015)=2025$ and $P(x)-10=\sqrt{P(x^{2}+3)-13}$ for every $x\ge 0$ .

2009 Moldova National Olympiad, 12.3

Find all pairs $(a,b)$ of real numbers, so that $\sin(2009x)+\sin(ax)+\sin(bx)=0$ holds for any $x\in \mathbf {R}$.

2017 Saudi Arabia JBMO TST, 5

Let $a,b,c>0$ and $a+b+c=6$ . Prove that $$ \frac{1}{a^2b+16}+\frac{1}{b^2c+16}+\frac{1}{c^2a+16} \ge \frac{1}{8}.$$

2011 IFYM, Sozopol, 7

Find all function $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $f(x+y)-2f(x-y)+f(x)-2f(y)=y-2,\forall x,y\in \mathbb{R}$.

2011 Belarus Team Selection Test, 3

Find all functions $f: R \to R ,g: R \to R$ satisfying the following equality $f(f(x+y))=xf(y)+g(x)$ for all real $x$ and $y$. I. Gorodnin

2000 All-Russian Olympiad, 4

Let $a_1, a_2, \cdots, a_n$ be a sequence of nonnegative integers. For $k=1,2,\cdots,n$ denote \[ m_k = \max_{1 \le l \le k} \frac{a_{k-l+1} + a_{k-l+2} + \cdots + a_k}{l}. \] Prove that for every $\alpha > 0$ the number of values of $k$ for which $m_k > \alpha$ is less than $\frac{a_1+a_2+ \cdots +a_n}{\alpha}.$

2011 Hanoi Open Mathematics Competitions, 5

Let $a, b, c$ be positive integers such that $a + 2b +3c = 100$. Find the greatest value of $M = abc$

2014 ELMO Shortlist, 7

Find all positive integers $n$ with $n \ge 2$ such that the polynomial \[ P(a_1, a_2, ..., a_n) = a_1^n+a_2^n + ... + a_n^n - n a_1 a_2 ... a_n \] in the $n$ variables $a_1$, $a_2$, $\dots$, $a_n$ is irreducible over the real numbers, i.e. it cannot be factored as the product of two nonconstant polynomials with real coefficients. [i]Proposed by Yang Liu[/i]

2013 Dutch IMO TST, 5

Let $a, b$, and $c$ be positive real numbers satisfying $abc = 1$. Show that $a + b + c \ge \sqrt{\frac13 (a + 2)(b + 2)(c + 2)}$

1993 Swedish Mathematical Competition, 6

Tags: function , algebra
For real numbers $a$ and $b$ define $f(x) = \frac{1}{ax+b}$. For which $a$ and $b$ are there three distinct real numbers $x_1,x_2,x_3$ such that $f(x_1) = x_2$, $f(x_2) = x_3$ and $f(x_3) = x_1$?

2002 National Olympiad First Round, 11

What is the coefficient of $x^5$ in the expansion of $(1 + x + x^2)^9$? $ \textbf{a)}\ 1680 \qquad\textbf{b)}\ 882 \qquad\textbf{c)}\ 729 \qquad\textbf{d)}\ 450 \qquad\textbf{e)}\ 246 $

2022 Princeton University Math Competition, 5

Tags: algebra
You’re given the complex number $\omega = e^{2i\pi/13} + e^{10i\pi/13} + e^{16i\pi/13} + e^{24i\pi/13}$, and told it’s a root of a unique monic cubic $x^3 +ax^2 +bx+c$, where $a, b, c$ are integers. Determine the value of $a^2 + b^2 + c^2$.

2015 Moldova Team Selection Test, 1

Find all functions $f : \mathbb{Z}_{+} \rightarrow \mathbb{Z}_{+}$ that satisfy $f(mf(n)) = n+f(2015m)$ for all $m,n \in \mathbb{Z}_{+}$.

2024 Argentina Cono Sur TST, 4

Tags: algebra
Determine the least possible value of $\dfrac{(x^2+1)(4y^2+1)(9z^2+1)}{6xyz}$ if $x$, $y$ and $z$ are positive real numbers.

2021 Korea Junior Math Olympiad, 5

Determine all functions $f \colon \mathbb{R} \to \mathbb{R}$ satisfying $$f(f(x+y)-f(x-y))=y^2f(x)$$ for all $x, y \in \mathbb{R}$.

2020 JBMO TST of France, 3

Tags: function , algebra
Let n be a nonzero natural number. We say about a function f ∶ R ⟶ R that is n-positive if, for any real numbers $x_1, x_2,...,x_n$ with the property that $x_1+x_2+...+x_n = 0$, the inequality $f(x_1)+f(x_2)+...+f(x_n)=>0$ is true a) Is it true that any 2020-positive function is also 1010-positive? b) Is it true that any 1010-positive function is 2020-positive?

2011 Gheorghe Vranceanu, 2

$ a>0,\quad\lim_{n\to\infty }\sum_{i=1}^n \frac{1}{n+a^i} $

2002 Canada National Olympiad, 5

Let $\mathbb N = \{0,1,2,\ldots\}$. Determine all functions $f: \mathbb N \to \mathbb N$ such that \[ xf(y) + yf(x) = (x+y) f(x^2+y^2) \] for all $x$ and $y$ in $\mathbb N$.

2023 Flanders Math Olympiad, 1

Tags: algebra
An arithmetic sequence is a sequence of numbers for which the difference between two consecutive numbers applies terms is constant. So this is an arithmetic sequence with difference $\frac56$: $$\frac13,\frac76, 2,\frac{17}{6},\frac{11}{3},\frac92.$$ The sequence of seven natural numbers $60$, $70$, $84$, $105$, $140$, $210$, $420$ has the property that the sequence inverted numbers (i.e. the row $\frac{1}{60}$, $\frac{1}{70}$, $\frac{1}{84}$, $\frac{1}{105}$, $\frac{1}{140}$, $\frac{1}{210}$,$\frac{1}{420}$ ) is an arithmetic sequence. (a) Is there a sequence of eight different natural numbers whose inverse numbers are one form an arithmetic sequence? (b) Is there an infinite sequence of distinct natural numbers whose inverses are form an arithmetic sequence?

2024 Kosovo Team Selection Test, P3

Find all functions $f:\mathbb R\to\mathbb R$ such that $$(x-y)f(x+y) - (x+y)f(x-y) = 2y(f(x)-f(y) - 1)$$for all $x, y\in\mathbb R$.