This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2006 Argentina National Olympiad, 1

Let $A$ be the set of positive real numbers less than $1$ that have a periodic decimal expansion with a period of ten different digits. Find a positive integer $n$ greater than $1$ and less than $10^{10}$ such that $na-a$ is a positive integer for all $a$. of set $A$.

1984 IMO Longlists, 14

Let $c$ be a positive integer. The sequence $\{f_n\}$ is defined as follows: \[f_1 = 1, f_2 = c, f_{n+1} = 2f_n - f_{n-1} + 2 \quad (n \geq 2).\] Show that for each $k \in \mathbb N$ there exists $r \in \mathbb N$ such that $f_kf_{k+1}= f_r.$

1997 Taiwan National Olympiad, 1

Tags: algebra , function
Let $a$ be rational and $b,c,d$ are real numbers, and let $f: \mathbb{R}\to [-1.1]$ be a function satisfying $f(x+a+b)-f(x+b)=c[x+2a+[x]-2[x+a]-[b]]+d$ for all $x$. Show that $f$ is periodic.

2013 ELMO Problems, 5

For what polynomials $P(n)$ with integer coefficients can a positive integer be assigned to every lattice point in $\mathbb{R}^3$ so that for every integer $n \ge 1$, the sum of the $n^3$ integers assigned to any $n \times n \times n$ grid of lattice points is divisible by $P(n)$? [i]Proposed by Andre Arslan[/i]

1978 IMO Shortlist, 15

Let $p$ be a prime and $A = \{a_1, \ldots , a_{p-1} \}$ an arbitrary subset of the set of natural numbers such that none of its elements is divisible by $p$. Let us define a mapping $f$ from $\mathcal P(A)$ (the set of all subsets of $A$) to the set $P = \{0, 1, \ldots, p - 1\}$ in the following way: $(i)$ if $B = \{a_{i_{1}}, \ldots , a_{i_{k}} \} \subset A$ and $\sum_{j=1}^k a_{i_{j}} \equiv n \pmod p$, then $f(B) = n,$ $(ii)$ $f(\emptyset) = 0$, $\emptyset$ being the empty set. Prove that for each $n \in P$ there exists $B \subset A$ such that $f(B) = n.$

2021 Czech-Polish-Slovak Junior Match, 5

Find all three real numbers $(x, y, z)$ satisfying the system of equations $$\frac{x}{y}+\frac{y}{z}+\frac{z}{x}=\frac{x}{z}+\frac{z}{y}+\frac{y}{x}$$ $$x^2 + y^2 + z^2 = xy + yz + zx + 4$$

1985 Putnam, A6

If $p(x)=a_{0}+a_{1} x+\cdots+a_{m} x^{m}$ is a polynomial with real coefficients $a_{i},$ then set $$ \Gamma(p(x))=a_{0}^{2}+a_{1}^{2}+\cdots+a_{m}^{2}. $$ Let $F(x)=3 x^{2}+7 x+2 .$ Find, with proof, a polynomial $g(x)$ with real coefficients such that (i) $g(0)=1,$ and (ii) $\Gamma\left(f(x)^{n}\right)=\Gamma\left(g(x)^{n}\right)$ for every integer $n \geq 1.$

2000 Austria Beginners' Competition, 2

Let $a,b$ positive real numbers. Prove that $$\frac{(a+b)^3}{a^2b}\ge \frac{27}{4}.$$ When does equality occur?

1980 IMO, 1

Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.

2012 HMNT, 1

Tags: algebra
If $4^{4^4} =\sqrt[128]{2^{2^{2^n}}}$ , find $n$.

1974 Spain Mathematical Olympiad, 3

We will designate by $Z_{(5)}$ a certain subset of the set $Q$ of the rational numbers . A rational belongs to $Z_{(5)}$ if and only if there exist equal fraction to this rational such that $5$ is not a divisor of its denominator. (For example, the rational number $13/10$ does not belong to $Z_{(5)}$ , since the denominator of all fractions equal to $13/10$ is a multiple of $5$. On the other hand, the rational $75/10$ belongs to $Z_{(5)}$ since that $75/10 = 15/12$). Reasonably answer the following questions: a) What algebraic structure (semigroup, group, etc.) does $Z_{(5)}$ have with respect to the sum? b) And regarding the product? c) Is $Z_{(5)}$ a subring of $Q$? d) Is $Z_{(5)}$ a vector space?

Kettering MO, 2016

[b]p1.[/b] Solve the equation $3^x + 9^x = 27^x$. [b]p2.[/b] An equilateral triangle in inscribed in a circle of area $1$ m$^2$. Then the second circle is inscribed in the triangle. Find the radius of the second circle. [b]p3.[/b] Solve the inequality: $2\sqrt{x^2 - 5x + 4} + 3\sqrt{x^2 + 2x - 3} \le 5\sqrt{6 - x - x^2}$ [b]p4.[/b] Peter and John played a game. Peter wrote on a blackboard all integers from $1$ to $18$ and offered John to choose $8$ different integers from this list. To win the game John had to choose 8 integers such that among them the difference between any two is either less than $7$ or greater than $11$. Can John win the game? Justify your answer. [b]p5.[/b] Prove that given $100$ different positive integers such that none of them is a multiple of $100$, it is always possible to choose several of them such that the last two digits of their sum are zeros. [b]p6.[/b] Given $100$ different squares such that the sum of their areas equals $1/2$ m$^2$ , is it possible to place them on a square board with area $1$ m$^2$ without overlays? Justify your answer. PS. You should use hide for answers.

2009 Bosnia and Herzegovina Junior BMO TST, 2

Let $a$ , $b$, $c$ and $d$ be positive real numbers such that $a+b+c+d=8$. Prove that $\frac{1}{a}+\frac{1}{b}+\frac{4}{c}+\frac{16}{d}\geq8$

2014 Contests, 1

Tags: algebra
Three positive real numbers $a,b,c$ are such that $a^2+5b^2+4c^2-4ab-4bc=0$. Can $a,b,c$ be the lengths of te sides of a triangle? Justify your answer.

2012 BMT Spring, round 1

[b]p1.[/b] Find all prime factors of $8051$. [b]p2.[/b] Simplify $$[\log_{xyz}(x^z)][1 + \log_x y + \log_x z],$$ where $x = 628$, $y = 233$, $z = 340$. [b]p3.[/b] In prokaryotes, translation of mRNA messages into proteins is most often initiated at start codons on the mRNA having the sequence AUG. Assume that the mRNA is single-stranded and consists of a sequence of bases, each described by a single letter A,C,U, or G. Consider the set of all pieces of bacterial mRNA six bases in length. How many such mRNA sequences have either no A’s or no U’s? [b]p4.[/b] What is the smallest positive $n$ so that $17^n + n$ is divisible by $29$? [b]p5.[/b] The legs of the right triangle shown below have length $a = 255$ and $b = 32$. Find the area of the smaller rectangle (the one labeled $R$). [img]https://cdn.artofproblemsolving.com/attachments/c/d/566f2ce631187684622dfb43f36c7e759e2f34.png[/img] [b]p6.[/b] A $3$ dimensional cube contains ”cubes” of smaller dimensions, ie: faces ($2$-cubes),edges ($1$-cubes), and vertices ($0$-cubes). How many 3-cubes are in a $5$-cube? PS. You had better use hide for answers.

1957 Czech and Slovak Olympiad III A, 1

Find all real numbers $p$ such that the equation $$\sqrt{x^2-5p^2}=px-1$$ has a root $x=3$. Then, solve the equation for the determined values of $p$.

1900 Eotvos Mathematical Competition, 3

Tags: algebra
A cliff is $300$ meters high. Consider two free-falling raindrops such that the second one leaves the top of the cliff when the first one has already fallen $0.001$ millimeters. What is the distance between the drops at the moment the first hits the ground? (Compute the answer to within $0.1$ mm. Neglect air resistance, etc.)

2007 Moldova National Olympiad, 12.3

For $a,b \in [1;\infty)$ show that \[ab\leq e^{a-1}+b\ln b\]

II Soros Olympiad 1995 - 96 (Russia), 11.1

Tags: algebra , logarithm
Solve the equation $$\log_{10} (x^3+x)=\log_2 x.$$

2020 CHMMC Winter (2020-21), 4

Consider the minimum positive real number $\lambda$ such that for any two squares $A,B$ satisfying $\text{Area}(A) + \text{Area}(B)=1$, there always exists some rectangle $C$ of area $\lambda$, such that $A,B$ can be put inside $C$ and satisfy the following two constraints: 1. $A,B$ are non-overlapping; 2. the sides of $A$ and $B$ are parallel to some side of $C$. $\lambda$ can be written as $\frac{\sqrt{m}+n}{p}$ for positive integers $m$, $n$, and $p$ where $n$ and $p$ are relatively prime. Find $m+n+p$.

1967 IMO Longlists, 6

Solve the system of equations: $ \begin{matrix} |x+y| + |1-x| = 6 \\ |x+y+1| + |1-y| = 4. \end{matrix} $

2008 District Round (Round II), 1

Tags: algebra
Let $n$ be an integer greater than $1$.Find all pairs of integers $(s,t)$ such that equations: $x^n+sx=2007$ and $x^n+tx=2008$ have at least one common real root.

2019 PUMaC Team Round, 13

Let $e_1, e_2, . . . e_{2019}$ be independently chosen from the set $\{0, 1, . . . , 20\}$ uniformly at random. Let $\omega = e^{\frac{2\pi}{i} 2019}$. Determine the expected value of $$|e_1\omega + e_2\omega^2 + ... + e_{2019}\omega^{2019}|.$$

2016 NIMO Problems, 4

A fair 100-sided die is rolled twice, giving the numbers $a$ and $b$ in that order. If the probability that $a^2-4b$ is a perfect square is $\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers, compute $100m+n$. [i] Proposed by Justin Stevens [/i]

1996 All-Russian Olympiad Regional Round, 9.7

Prove that if $0 < a, b < 1,$ then $$\frac{ab(1 - a)(1 - b)}{(1- ab)^2 }< \frac14.$$