This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2024 Bulgaria National Olympiad, 3

Find all functions $f:\mathbb {R}^{+} \rightarrow \mathbb{R}^{+}$, such that $$f(af(b)+a)(f(bf(a))+a)=1$$ for any positive reals $a, b$.

2008 IMC, 1

Find all continuous functions $f: \mathbb{R}\to \mathbb{R}$ such that \[ f(x)-f(y)\in \mathbb{Q}\quad \text{ for all }\quad x-y\in\mathbb{Q} \]

2019 BMT Spring, 7

Let $ r_1 $, $ r_2 $, $ r_3 $ be the (possibly complex) roots of the polynomial $ x^3 + ax^2 + bx + \dfrac{4}{3} $. How many pairs of integers $ a $, $ b $ exist such that $ r_1^3 + r_2^3 + r_3^3 = 0 $?

2019 LIMIT Category A, Problem 11

$z$ is a complex number and $|z|=1$ and $z^2\ne1$. Then $\frac z{1-z^2}$ lies on $\textbf{(A)}~\text{a line not through origin}$ $\textbf{(B)}~\text{|z|=2}$ $\textbf{(C)}~x-\text{axis}$ $\textbf{(D)}~y-\text{axis}$

2018 PUMaC Algebra A, 7

Tags: algebra
Let the sequence $\left \{ a_n \right \}_{n = -2}^\infty$ satisfy $a_{-1} = a_{-2} = 0, a_0 = 1$, and for all non-negative integers $n$, $$n^2 = \sum_{k = 0}^n a_{n - k}a_{k - 1} + \sum_{k = 0}^n a_{n - k}a_{k - 2}$$ Given $a_{2018}$ is rational, find the maximum integer $m$ such that $2^m$ divides the denominator of the reduced form of $a_{2018}$.

2013 Junior Balkan Team Selection Tests - Moldova, 5

The real numbers $a, b, c$ are positive, and the real numbers $p, q, r \in [0,1/2]$ satisfy equality $p + q + r = 1$. Prove the inequality $$pab + qbc + rca \le \frac18 (a + b + c)^2.$$

2010 Contests, 4

Tags: algebra
Let $a_n$ and $b_n$ to be two sequences defined as below: $i)$ $a_1 = 1$ $ii)$ $a_n + b_n = 6n - 1$ $iii)$ $a_{n+1}$ is the least positive integer different of $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n$. Determine $a_{2009}$.

2017 Baltic Way, 3

Positive integers $x_1,...,x_m$ (not necessarily distinct) are written on a blackboard. It is known that each of the numbers $F_1,...,F_{2018}$ can be represented as a sum of one or more of the numbers on the blackboard. What is the smallest possible value of $m$? (Here $F_1,...,F_{2018}$ are the first $2018$ Fibonacci numbers: $F_1=F_2=1, F_{k+1}=F_k+F_{k-1}$ for $k>1$.)

2011 Mathcenter Contest + Longlist, 11

Let $a,b,c\in R^+$ with $a+b+c=3$. Prove that $$2(ab+bc+ca)\le 5+ abc$$ [i](Real Matrik)[/i]

1998 Czech And Slovak Olympiad IIIA, 1

Solve the equation $x\cdot [x\cdot [x \cdot [x]]] = 88$ in the set of real numbers.

2024 Taiwan Mathematics Olympiad, 3

Find all functions $f$ from real numbers to real numbers such that $$2f((x+y)^2)=f(x+y)+(f(x))^2+(4y-1)f(x)-2y+4y^2$$ holds for all real numbers $x$ and $y$.

2018 Thailand TST, 1

Let $a_1,a_2,\ldots a_n,k$, and $M$ be positive integers such that $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k\quad\text{and}\quad a_1a_2\cdots a_n=M.$$ If $M>1$, prove that the polynomial $$P(x)=M(x+1)^k-(x+a_1)(x+a_2)\cdots (x+a_n)$$ has no positive roots.

2016 Greece Junior Math Olympiad, 2

Tags: algebra
Given is that $x, y, z$ are real numbers, different from 0, $x$ and $z$ are different, such that $(x+y) ^2+(2-xy)=9$ and $(y+z) ^2-(3+yz)=4$ Find the value of $A=(x/y+y^2/x^2+z^3/x^2y)(y/z+z^2/y^2+x^3/y^2z)(z/x+x^2/z^2+y^3/z^2x)=?$

1971 AMC 12/AHSME, 14

The number $(2^{48}-1)$ is exactly divisible by two numbers between $60$ and $70$. These numbers are $\textbf{(A) }61,63\qquad\textbf{(B) }61,65\qquad\textbf{(C) }63,65\qquad\textbf{(D) }63,67\qquad \textbf{(E) }67,69$

2014 Belarus Team Selection Test, 2

Let $x,y,z$ be pairwise distinct real numbers such that $x^2-1/y = y^2 -1/z = z^2 -1/x$. Given $z^2 -1/x = a$, prove that $(x + y + z)xyz= -a^2$. (I. Voronovich)

1966 All Russian Mathematical Olympiad, 082

Tags: algebra
The distance from $A$ to $B$ is $d$ kilometres. A plane flying with the constant speed in the constant direction along and over the line $(AB)$ is being watched from those points. Observers have reported that the angle to the plane from the point $A$ has changed by $\alpha$ degrees and from $B$ --- by $\beta$ degrees within one second. What can be the minimal speed of the plane?

2011 Iran MO (3rd Round), 2

Let $n$ and $k$ be two natural numbers such that $k$ is even and for each prime $p$ if $p|n$ then $p-1|k$. let $\{a_1,....,a_{\phi(n)}\}$ be all the numbers coprime to $n$. What's the remainder of the number $a_1^k+.....+a_{\phi(n)}^k$ when it's divided by $n$? [i]proposed by Yahya Motevassel[/i]

MBMT Team Rounds, 2016

[hide=E stands for Euclid , L stands for Lobachevsky]they had two problem sets under those two names[/hide] [b]E1.[/b] How many positive divisors does $72$ have? [b]E2 / L2.[/b] Raymond wants to travel in a car with $3$ other (distinguishable) people. The car has $5$ seats: a driver’s seat, a passenger seat, and a row of $3$ seats behind them. If Raymond’s cello must be in a seat next to him, and he can’t drive, but every other person can, how many ways can everyone sit in the car? [b]E3 / L3.[/b] Peter wants to make fruit punch. He has orange juice ($100\%$ orange juice), tropical mix ($25\%$ orange juice, $75\%$ pineapple juice), and cherry juice ($100\%$ cherry juice). If he wants his final mix to have $50\%$ orange juice, $10\%$ cherry juice, and $40\%$ pineapple juice, in what ratios should he mix the $3$ juices? Please write your answer in the form (orange):(tropical):(cherry), where the three integers are relatively prime. [b]E4 / L4.[/b] Points $A, B, C$, and $D$ are chosen on a circle such that $m \angle ACD = 85^o$, $m\angle ADC = 40^o$,and $m\angle BCD = 60^o$. What is $m\angle CBD$? [b]E5.[/b] $a, b$, and $c$ are positive real numbers. If $abc = 6$ and $a + b = 2$, what is the minimum possible value of $a + b + c$? [b]E6 / L5.[/b] Circles $A$ and $B$ are drawn on a plane such that they intersect at two points. The centers of the two circles and the two intersection points lie on another circle, circle $C$. If the distance between the centers of circles $A$ and $B$ is $20$ and the radius of circle $A$ is $16$, what is the radius of circle $B$? [b]E7.[/b] Point $P$ is inside rectangle $ABCD$. If $AP = 5$, $BP = 6$, and $CP = 7$, what is the length of $DP$? [b]E8 / L6.[/b] For how many integers $n$ is $n^2 + 4$ divisible by $n + 2$? [b]E9. [/b] How many of the perfect squares between $1$ and $10000$, inclusive, can be written as the sum of two triangular numbers? We define the $n$th triangular number to be $1 + 2 + 3 + ... + n$, where $n$ is a positive integer. [b]E10 / L7.[/b] A small sphere of radius $1$ is sitting on the ground externally tangent to a larger sphere, also sitting on the ground. If the line connecting the spheres’ centers makes a $60^o$ angle with the ground, what is the radius of the larger sphere? [b]E11 / L8.[/b] A classroom has $12$ chairs in a row and $5$ distinguishable students. The teacher wants to position the students in the seats in such a way that there is at least one empty chair between any two students. In how many ways can the teacher do this? [b]E12 / L9.[/b] Let there be real numbers $a$ and $b$ such that $a/b^2 + b/a^2 = 72$ and $ab = 3$. Find the value of $a^2 + b^2$. [b]E13 / L10.[/b] Find the number of ordered pairs of positive integers $(x, y)$ such that $gcd \, (x, y)+lcm \, (x, y) =x + y + 8$. [b]E14 / L11.[/b] Evaluate $\sum_{i=1}^{\infty}\frac{i}{4^i}=\frac{1}{4} +\frac{2}{16} +\frac{3}{64} +...$ [b]E15 / L12.[/b] Xavier and Olivia are playing tic-tac-toe. Xavier goes first. How many ways can the game play out such that Olivia wins on her third move? The order of the moves matters. [b]L1.[/b] What is the sum of the positive divisors of $100$? [b]L13.[/b] Let $ABCD$ be a convex quadrilateral with $AC = 20$. Furthermore, let $M, N, P$, and $Q$ be the midpoints of $DA, AB, BC$, and $CD$, respectively. Let $X$ be the intersection of the diagonals of quadrilateral $MNPQ$. Given that $NX = 12$ and $XP = 10$, compute the area of $ABCD$. [b]L14.[/b] Evaluate $(\sqrt3 + \sqrt5)^6$ to the nearest integer. [b]L15.[/b] In Hatland, each citizen wears either a green hat or a blue hat. Furthermore, each citizen belongs to exactly one neighborhood. On average, a green-hatted citizen has $65\%$ of his neighbors wearing green hats, and a blue-hatted citizen has $80\%$ of his neighbors wearing blue hats. Each neighborhood has a different number of total citizens. What is the ratio of green-hatted to blue-hatted citizens in Hatland? (A citizen is his own neighbor.) PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024 Malaysian APMO Camp Selection Test, 3

Tags: algebra
Find all functions $f:\mathbb{Z}\rightarrow \mathbb{Z}$ such that for all integers $x$, $y$, $$f(x-f(y))=f(f(y))+f(x-2y)$$ [i]Proposed by Ivan Chan Kai Chin[/i]

2013 Czech-Polish-Slovak Match, 3

For each rational number $r$ consider the statement: If $x$ is a real number such that $x^2-rx$ and $x^3-rx$ are both rational, then $x$ is also rational. [list](a) Prove the claim for $r \ge \frac43$ and $r \le 0$. (b) Let $p,q$ be different odd primes such that $3p <4q$. Prove that the claim for $r=\frac{p}q$ does not hold. [/list]

2023 Serbia Team Selection Test, P4

Let $p$ be a prime and $P\in \mathbb{R}[x]$ be a polynomial of degree less than $p-1$ such that $\lvert P(1)\rvert=\lvert P(2)\rvert=\ldots=\lvert P(p)\rvert$. Prove that $P$ is constant.

2014 AIME Problems, 5

Real numbers $r$ and $s$ are roots of $p(x)=x^3+ax+b$, and $r+4$ and $s-3$ are roots of $q(x)=x^3+ax+b+240$. Find the sum of all possible values of $|b|$.

2008 Brazil Team Selection Test, 2

Find all polynomials $P (x)$ with complex coefficients such that $$P (x^2) = P (x) · P (x + 2)$$ for any complex number $x.$

2021 China Team Selection Test, 3

Determine the greatest real number $ C $, such that for every positive integer $ n\ge 2 $, there exists $ x_1, x_2,..., x_n \in [-1,1]$, so that $$\prod_{1\le i<j\le n}(x_i-x_j) \ge C^{\frac{n(n-1)}{2}}$$.

2012 Bundeswettbewerb Mathematik, 1

given a positive integer $n$. the set $\{ 1,2,..,2n \}$ is partitioned into $a_1<a_2<...<a_n $ and $b_1>b_2>...>b_n$. find the value of : $ \sum_{i=1}^{n}|a_i - b_i| $