This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

MMPC Part II 1958 - 95, 1987

[b]p1.[/b] Let $D(n)$ denote the number of positive factors of the integer $n$. For example, $D(6) = 4$ , since the factors of $6$ are $1, 2, 3$ , and $6$ . Note that $D(n) = 2$ if and only if $n$ is a prime number. (a) Describe the set of all solutions to the equation $D(n) = 5$ . (b) Describe the set of all solutions to the equation $D(n) = 6$ . (c) Find the smallest $n$ such that $D(n) = 21$ . [b]p2.[/b] At a party with $n$ married couples present (and no one else), various people shook hands with various other people. Assume that no one shook hands with his or her spouse, and no one shook hands with the same person more than once. At the end of the evening Mr. Jones asked everyone else, including his wife, how many hands he or she had shaken. To his surprise, he got a different answer from each person. Determine the number of hands that Mr. Jones shook that evening, (a) if $n = 2$ . (b) if $n = 3$ . (c) if $n$ is an arbitrary positive integer (the answer may depend on $n$). [b]p3.[/b] Let $n$ be a positive integer. A square is divided into triangles in the following way. A line is drawn from one corner of the square to each of $n$ points along each of the opposite two sides, forming $2n + 2$ nonoverlapping triangles, one of which has a vertex at the opposite corner and the other $2n + 1$ of which have a vertex at the original corner. The figure shows the situation for $n = 2$ . Assume that each of the $2n + 1$ triangles with a vertex in the original corner has area $1$. Determine the area of the square, (a) if $n = 1$ . (b) if $n$ is an arbitrary positive integer (the answer may depend on $n$). [img]https://cdn.artofproblemsolving.com/attachments/1/1/62a54011163cc76cc8d74c73ac9f74420e1b37.png[/img] [b]p4.[/b] Arthur and Betty play a game with the following rules. Initially there are one or more piles of stones, each pile containing one or more stones. A legal move consists either of removing one or more stones from one of the piles, or, if there are at least two piles, combining two piles into one (but not removing any stones). Arthur goes first, and play alternates until a player cannot make a legal move; the player who cannot move loses. (a) Determine who will win the game if initially there are two piles, each with one stone, assuming that both players play optimally. (b) Determine who will win the game if initially there are two piles, each with $n$ stones, assuming that both players play optimally; $n$ is a positive integer, and the answer may depend on $n$ . (c) Determine who will win the game if initially there are $n$ piles, each with one stone, assuming that both players play optimally; $n$ is a positive integer, and the answer may depend on $n$ . [b]p5.[/b] Suppose $x$ and $y$ are real numbers such that $0 < x < y$. Define a sequence$ A_0 , A_1 , A_2, A_3, ...$ by-setting $A_0 = x$ , $A_1 = y$ , and then $A_n= |A_{n-1}| - A_{n-2}$ for each $n \ge 2$ (recall that $|A_{n-1}|$ means the absolute value of $A_{n-1}$ ). (a) Find all possible values for $A_6$ in terms of $x$ and $y$ . (b) Find values of $x$ and $y$ so that $A_{1987} = 1987$ and $A_{1988} = -1988$ (simultaneously). PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 South East Mathematical Olympiad, 3

Given a polynomial $f(x)=x^{2020}+\sum_{i=0}^{2019} c_ix^i$, where $c_i \in \{ -1,0,1 \}$. Denote $N$ the number of positive integer roots of $f(x)=0$ (counting multiplicity). If $f(x)=0$ has no negative integer roots, find the maximum of $N$.

1973 All Soviet Union Mathematical Olympiad, 178

The real numbers $a,b,c$ satisfy the condition: for all $x$, such that for $ -1 \le x \le 1$, the inequality $$| ax^2 + bx + c | \le 1$$ is held. Prove that for the same $x$ , $$| cx^2 + bx + a | \le 2$$

2014 Contests, 3

We say a finite set $S$ of points in the plane is [i]very[/i] if for every point $X$ in $S$, there exists an inversion with center $X$ mapping every point in $S$ other than $X$ to another point in $S$ (possibly the same point). (a) Fix an integer $n$. Prove that if $n \ge 2$, then any line segment $\overline{AB}$ contains a unique very set $S$ of size $n$ such that $A, B \in S$. (b) Find the largest possible size of a very set not contained in any line. (Here, an [i]inversion[/i] with center $O$ and radius $r$ sends every point $P$ other than $O$ to the point $P'$ along ray $OP$ such that $OP\cdot OP' = r^2$.) [i]Proposed by Sammy Luo[/i]

2004 Nicolae Coculescu, 3

Prove the identity $ \frac{n-1}{2}=\sum_{k=1}^n \left\{ \frac{m+k-1}{n} \right\} , $ where $ n\ge 2, m $ are natural numbers, and $ \{\} $ denotes the fractional part.

2022 Azerbaijan EGMO/CMO TST, A2

Let $a, b$ and $c$ be pairwise different natural numbers. Prove $\frac{a^3 + b^3 + c^3}{3} \ge abc + a + b + c$. When does equality holds? (Karl Czakler)

Kvant 2023, M2751

Tags: algebra
Every positive integer greater than $1000$ is colored in red or blue, such that the product of any two distinct red numbers is blue. Is it possible to happen that no two blue numbers have difference $1$?

1950 Moscow Mathematical Olympiad, 182

Prove that $\frac{1}{2} \frac{3}{4} \frac{5}{6} \frac{7}{8} ... \frac{99}{100 } <\frac{1}{10}$.

2024 Dutch BxMO/EGMO TST, IMO TSTST, 3

Find all pairs of positive integers $(a, b)$ such that $f(x)=x$ is the only function $f:\mathbb{R}\to \mathbb{R}$ that satisfies $$f^a(x)f^b(y)+f^b(x)f^a(y)=2xy$$ for all $x, y\in \mathbb{R}$.

2019 IMO Shortlist, A5

Let $x_1, x_2, \dots, x_n$ be different real numbers. Prove that \[\sum_{1 \leqslant i \leqslant n} \prod_{j \neq i} \frac{1-x_{i} x_{j}}{x_{i}-x_{j}}=\left\{\begin{array}{ll} 0, & \text { if } n \text { is even; } \\ 1, & \text { if } n \text { is odd. } \end{array}\right.\]

1969 IMO Shortlist, 29

$(GDR 1)$ Find all real numbers $\lambda$ such that the equation $\sin^4 x - \cos^4 x = \lambda(\tan^4 x - \cot^4 x)$ $(a)$ has no solution, $(b)$ has exactly one solution, $(c)$ has exactly two solutions, $(d)$ has more than two solutions (in the interval $(0, \frac{\pi}{4}).$

2015 AMC 12/AHSME, 18

The zeroes of the function $f(x)=x^2-ax+2a$ are integers. What is the sum of all possible values of $a$? $\textbf{(A) }7\qquad\textbf{(B) }8\qquad\textbf{(C) }16\qquad\textbf{(D) }17\qquad\textbf{(E) }18$

1993 Italy TST, 1

Let $x_1,x_2,...,x_n$ ($n \ge 2$) be positive numbers with the sum $1$. Prove that $$\sum_{i=1}^{n} \frac{1}{\sqrt{1-x_i}} \ge n\sqrt{\frac{n}{n-1}} $$

2010 Indonesia TST, 4

Given a positive integer $n$ and $I = \{1, 2,..., k\}$ with $k$ is a positive integer. Given positive integers $a_1, a_2, ..., a_k$ such that for all $i \in I$: $1 \le a_i \le n$ and $$\sum_{i=1}^k a_i \ge 2(n!).$$ Show that there exists $J \subseteq I$ such that $$n! + 1 \ge \sum_{j \in J}a_j >\sqrt {n! + (n - 1)n}$$

2006 Turkey Team Selection Test, 1

Find the maximum value for the area of a heptagon with all vertices on a circle and two diagonals perpendicular.

2015 NIMO Problems, 7

Tags: function , algebra
Find the number of ways a series of $+$ and $-$ signs can be inserted between the numbers $0,1,2,\cdots, 12$ such that the value of the resulting expression is divisible by 5. [i]Proposed by Matthew Lerner-Brecher[/i]

2002 Estonia National Olympiad, 5

Tags: sum , sequence , algebra
The teacher writes numbers $1$ at both ends of the blackboard. The first student adds a $2$ in the middle between them, each next student adds the sum of each two adjacent numbers already on the blackboard between them (hence there are numbers $1, 3, 2, 3, 1$ on the blackboard after the second student, $1, 4, 3, 5, 2, 5, 3, 4, 1$ after the third student etc.) Find the sum of all numbers on the blackboard after the $n$-th student.

2017 QEDMO 15th, 4

Tags: algebra
Let $a$ be a real number such that $\left(a + \frac{1}{a}\right)^2=11$. What possible values can $a^3 + \frac{1}{a^3}$ and $a^5 + \frac{1}{a^5}$ take?

MMPC Part II 1996 - 2019, 2009

[b]p1.[/b] Given a group of $n$ people. An $A$-list celebrity is one that is known by everybody else (that is, $n - 1$ of them) but does not know anybody. A $B$-list celebrity is one that is known by exactly $n - 2$ people but knows at most one person. (a) What is the maximum number of $A$-list celebrities? You must prove that this number is attainable. (b) What is the maximum number of $B$-list celebrities? You must prove that this number is attainable. [b]p2.[/b] A polynomial $p(x)$ has a remainder of $2$, $-13$ and $5$ respectively when divided by $x+1$, $x-4$ and $x-2$. What is the remainder when $p(x)$ is divided by $(x + 1)(x - 4)(x - 2)$? [b]p3.[/b] (a) Let $x$ and y be positive integers satisfying $x^2 + y = 4p$ and $y^2 + x = 2p$, where $p$ is an odd prime number. Prove: $x + y = p + 1$. (b) Find all values of $x, y$ and $p$ that satisfy the conditions of part (a). You will need to prove that you have found all such solutions. [b]p4.[/b] Let function $f(x, y, z)$ be defined as following: $$f(x, y, z) = \cos^2(x - y) + \cos^2(y - z) + \cos^2(z - x), x, y, z \in R.$$ Find the minimum value and prove the result. [b]p5.[/b] In the diagram below, $ABC$ is a triangle with side lengths $a = 5$, $b = 12$,$ c = 13$. Let $P$ and $Q$ be points on $AB$ and $AC$, respectively, chosen so that the segment $PQ$ bisects the area of $\vartriangle ABC$. Find the minimum possible value for the length $PQ$. [img]https://cdn.artofproblemsolving.com/attachments/b/2/91a09dd3d831b299b844b07cd695ddf51cb12b.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url]. Thanks to gauss202 for sending the problems.

2000 Belarus Team Selection Test, 7.1

For any positive numbers $a,b,c,x,y, z$, prove the inequality $ \frac{a^3}{x}+ \frac{b^3}{y}+ \frac{c^3}{z} \ge \frac{(a+b+c)^3}{3(x+y+z)}$

2014 Postal Coaching, 5

Determine all polynomials $f$ with integer coefficients with the property that for any two distinct primes $p$ and $q$, $f(p)$ and $f(q)$ are relatively prime.

2009 China National Olympiad, 1

Given an integer $ n > 3.$ Let $ a_{1},a_{2},\cdots,a_{n}$ be real numbers satisfying $ min |a_{i} \minus{} a_{j}| \equal{} 1, 1\le i\le j\le n.$ Find the minimum value of $ \sum_{k \equal{} 1}^n|a_{k}|^3.$

2025 India STEMS Category C, 5

Let $P \in \mathbb{R}[x]$. Suppose that the multiset of real roots (where roots are counted with multiplicity) of $P(x)-x$ and $P^3(x)-x$ are distinct. Prove that for all $n\in \mathbb{N}$, $P^n(x)-x$ has at least $\sigma(n)-2$ distinct real roots. (Here $P^n(x):=P(P^{n-1}(x))$ with $P^1(x) = P(x)$, and $\sigma(n)$ is the sum of all positive divisors of $n$). [i]Proposed by Malay Mahajan[/i]

2010 Princeton University Math Competition, 8

Let $p$ be a polynomial with integer coefficients such that $p(15)=6$, $p(22)=1196$, and $p(35)=26$. Find an integer $n$ such that $p(n)=n+82$.

EMCC Team Rounds, 2021

[b]p1.[/b] Suppose that Yunseo wants to order a pizza that is cut into $4$ identical slices. For each slice, there are $2$ toppings to choose from: pineapples and apples. Each slice must have exactly one topping. How many distinct pizzas can Yunseo order? Pizzas that can be obtained by rotating one pizza are considered the same. [b]p2.[/b] How many triples of distinct positive integers $(E, M, C)$ are there such that $E = MC^2$ and $E \le 50$? [b]p3.[/b] Given that the cubic polynomial $p(x)$ has leading coefficient $1$ and satisfies $p(0) = 0$, $p(1) = 1$, and $p(2) = 2$. Find $p(3)$. [b]p4.[/b] Olaf asks Anna to guess a two-digit number and tells her that it’s a multiple of $7$ with two distinct digits. Anna makes her first guess. Olaf says one digit is right but in the wrong place. Anna adjusts her guess based on Olaf’s comment, but Olaf answers with the same comment again. Anna now knows what the number is. What is the sum of all the numbers that Olaf could have picked? [b]p5.[/b] Vincent the Bug draws all the diagonals of a regular hexagon with area $720$, splitting it into many pieces. Compute the area of the smallest piece. [b]p6.[/b] Given that $y - \frac{1}{y} = 7 + \frac{1}{7}$, compute the least integer greater than $y^4 + \frac{1}{y^4}$. [b]p7.[/b] At $9:00$ A.M., Joe sees three clouds in the sky. Each hour afterwards, a new cloud appears in the sky, while each old cloud has a $40\%$ chance of disappearing. Given that the expected number of clouds that Joe will see right after $1:00$ P.M. can be written in the form $p/q$ , where $p$ and $q$ are relatively prime positive integers, what is $p + q$? [b]p8.[/b] Compute the unique three-digit integer with the largest number of divisors. [b]p9.[/b] Jo has a collection of $101$ books, which she reads one each evening for $101$ evenings in a predetermined order. In the morning of each day that Jo reads a book, Amy chooses a random book from Jo’s collection and burns one page in it. What is the expected number of pages that Jo misses? [b]p10.[/b] Given that $x, y, z$ are positive real numbers satisfying $2x + y = 14 - xy$, $3y + 2z = 30 - yz$, and $z + 3x = 69 - zx$, the expression $x + y + z$ can be written as $p\sqrt{q} - r$, where $p, q, r$ are positive integers and $q$ is not divisible by the square of any prime. Compute $p + q + r$. [b]p11.[/b] In rectangle $TRIG$, points $A$ and $L$ lie on sides $TG$ and $TR$ respectively such that $TA = AG$ and $TL = 2LR$. Diagonal $GR$ intersects segments $IL$ and $IA$ at $B$ and $E$ respectively. Suppose that the area of the convex pentagon with vertices $TABLE$ is equal to $21$. What is the area of $TRIG$? [b]p12.[/b] Call a number nice if it can be written in the form $2^m \cdot 3^n$, where $m$ and $n$ are nonnegative integers. Vincent the Bug fills in a $3$ by $3$ grid with distinct nice numbers, such that the product of the numbers in each row and each column are the same. What is the smallest possible value of the largest number Vincent wrote? [b]p13.[/b] Let $s(n)$ denote the sum of digits of positive integer $n$ and define $f(n) = s(202n) - s(22n)$. Given that $M$ is the greatest possible value of $f(n)$ for $0 < n < 350$ and $N$ is the least value such that $f(N) = M$, compute $M + N$. [b]p14.[/b] In triangle $ABC$, let M be the midpoint of $BC$ and let $E, F$ be points on $AB, AC$, respectively, such that $\angle MEF = 30^o$ and $\angle MFE = 60^o$. Given that $\angle A = 60^o$, $AE = 10$, and $EB = 6$,compute $AB + AC$. [b]p15.[/b] A unit cube moves on top of a $6 \times 6$ checkerboard whose squares are unit squares. Beginning in the bottom left corner, the cube is allowed to roll up or right, rolling about its bottom edges to travel from square to square, until it reaches the top right corner. Given that the side of the cube facing upwards in the beginning is also facing upwards after the cube reaches the top right corner, how many total paths are possible? PS. You had better use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].