This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1996 Moldova Team Selection Test, 5

Find all polynomials $P(X)$ of fourth degree with real coefficients that verify the properties: [b]a)[/b] $P(-x)=P(x), \forall x\in\mathbb{R};$ [b]b)[/b] $P(x)\geq0, \forall x\in\mathbb{R};$ [b]c)[/b] $P(0)=1;$ [b]d)[/b] $P(X)$ has exactly two local minimums $x_1$ and $x_2$ such that $|x_1-x_2|=2.$

2011 Putnam, B6

Let $p$ be an odd prime. Show that for at least $(p+1)/2$ values of $n$ in $\{0,1,2,\dots,p-1\},$ \[\sum_{k=0}^{p-1}k!n^k \quad \text{is not divisible by }p.\]

2019 Hong Kong TST, 2

Let $n\geqslant 3$ be an integer. Prove that there exists a set $S$ of $2n$ positive integers satisfying the following property: For every $m=2,3,...,n$ the set $S$ can be partitioned into two subsets with equal sums of elements, with one of subsets of cardinality $m$.

2006 Singapore MO Open, 2

Show that any representation of 1 as the sum of distinct reciprocals of numbers drawn from the arithmetic progression $\{2,5,8,11,...\}$ such as given in the following example must have at least eight terms: \[1=\frac{1}{2}+\frac{1}{5}+\frac{1}{8}+\frac{1}{11}+\frac{1}{20}+\frac{1}{41}+\frac{1}{110}+\frac{1}{1640}\]

Kvant 2022, M2707

Prove that infinitely many positive integers can be represented as $(a-1)/b + (b-1)/c + (c-1)/a$, where $a$, $b$ and $c$ are pairwise distinct positive integers greater than 1.

Russian TST 2014, P1

Tags: algebra
Nine numbers $a, b, c, \dots$ are arranged around a circle. All numbers of the form $a+b^c, \dots$ are prime. What is the largest possible number of different numbers among $a, b, c, \dots$?

2016 IOM, 5

Tags: algebra
Let $r(x)$ be a polynomial of odd degree with real coefficients. Prove that there exist only finitely many (or none at all) pairs of polynomials $p(x) $ and $q(x)$ with real coefficients satisfying the equation $(p(x))^3 + q(x^2) = r(x)$.

1988 USAMO, 5

A polynomial product of the form \[(1-z)^{b_1}(1-z^2)^{b_2}(1-z^3)^{b_3}(1-z^4)^{b_4}(1-z^5)^{b_5}\cdots(1-z^{32})^{b_{32}},\] where the $b_k$ are positive integers, has the surprising property that if we multiply it out and discard all terms involving $z$ to a power larger than $32$, what is left is just $1-2z$. Determine, with proof, $b_{32}$.

2024 Canadian Mathematical Olympiad Qualification, 4

A sequence $\{a_i\}$ is given such that $a_1 = \frac13$ and for all positive integers $n$ $$a_{n+1} =\frac{a^2_n}{a^2_n - a_n + 1}.$$ Prove that $$\frac12 - \frac{1}{3^{2^{n-1}}} < a_1 + a_2 +... + a_n <\frac12 - \frac{1}{3^{2^n}} ,$$ for all positive integers $n$.

2011 China Second Round Olympiad, 2

For any integer $n\ge 4$, prove that there exists a $n$-degree polynomial $f(x)=x^n+a_{n-1}x^{n-1}+\cdots+a_0$ satisfying the two following properties: [b](1)[/b] $a_i$ is a positive integer for any $i=0,1,\ldots,n-1$, and [b](2)[/b] For any two positive integers $m$ and $k$ ($k\ge 2$) there exist distinct positive integers $r_1,r_2,...,r_k$, such that $f(m)\ne\prod_{i=1}^{k}f(r_i)$.

1979 Polish MO Finals, 6

A polynomial $w$ of degree $n > 1$ has $n$ distinct zeros $x_1,x_2,...,x_n$. Prove that: $$\frac{1}{w'(x_1)}+\frac{1}{w'(x_2)}+...···+\frac{1}{w'(x_n)}= 0.$$

PEN K Problems, 6

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $n\in \mathbb{N}$: \[f^{(19)}(n)+97f(n)=98n+232.\]

1980 All Soviet Union Mathematical Olympiad, 301

Prove that there is an infinite number of such numbers $B$ that the equation $\lfloor x^3/2\rfloor + \lfloor y^3/2 \rfloor = B$ has at least $1980$ integer solutions $(x,y)$. ($\lfloor z\rfloor$ denotes the greatest integer not exceeding $z$.)

1983 Spain Mathematical Olympiad, 4

Determine the number of real roots of the equation $$16x^5 - 20x^3 + 5x + m = 0.$$

2024 Durer Math Competition Finals, 1

Tags: fraction , algebra
Describe all ordered sets of four real numbers $(a, b, c, d)$ for which the values $a + b, b + c, c + d, d + a$ are all non-zero and \[\frac{a+2b+3c}{c+d}=\frac{b+2c+3d}{d+a}=\frac{c+2d+3a}{a+b}=\frac{d+2a+3b}{b+c}.\]

2023 China Western Mathematical Olympiad, 5

Let $a_1,a_2,\cdots,a_{100}\geq 0$ such that $\max\{a_{i-1}+a_i,a_i+a_{i+1}\}\geq i $ for any $2\leq i\leq 99.$ Find the minimum of $a_1+a_2+\cdots+a_{100}.$

1989 All Soviet Union Mathematical Olympiad, 494

Show that the $120$ five digit numbers which are permutations of $12345$ can be divided into two sets with each set having the same sum of squares.

2016 CMIMC, 4

Tags: algebra
A line with negative slope passing through the point $(18,8)$ intersects the $x$ and $y$ axes at $(a,0)$ and $(0,b)$, respectively. What is the smallest possible value of $a+b$?

2022 All-Russian Olympiad, 5

Tags: algebra
There are $11$ integers (not necessarily distinct) written on the board. Can it turn out that the product of any five of them is greater than the product of the other six?

2022 Germany Team Selection Test, 1

Tags: algebra
Let $n$ be a positive integer. Given is a subset $A$ of $\{0,1,...,5^n\}$ with $4n+2$ elements. Prove that there exist three elements $a<b<c$ from $A$ such that $c+2a>3b$. [i]Proposed by Dominik Burek and Tomasz Ciesla, Poland[/i]

1988 Czech And Slovak Olympiad IIIA, 5

Find all numbers $a \in (-2, 2)$ for which the polynomial $x^{154}-ax^{77}+1$ is a multiple of the polynomial $x^{14}-ax^{7}+1$.

1981 Romania Team Selection Tests, 1.

Consider the polynomial $P(X)=X^{p-1}+X^{p-2}+\ldots+X+1$, where $p>2$ is a prime number. Show that if $n$ is an even number, then the polynomial \[-1+\prod_{k=0}^{n-1} P\left(X^{p^k}\right)\] is divisible by $X^2+1$. [i]Mircea Becheanu[/i]

2004 Silk Road, 1

Tags: algebra
Find all $ f: \mathbb{R} \to \mathbb{R}$, such that $(x+y)(f(x)-f(y))=(x-y)f(x+y)$ for all real $x,y$.

1986 IMO Longlists, 73

Tags: algebra , limit
Let $(a_i)_{i\in \mathbb N}$ be a strictly increasing sequence of positive real numbers such that $\lim_{i \to \infty} a_i = +\infty$ and $a_{i+1}/a_i \leq 10$ for each $i$. Prove that for every positive integer $k$ there are infinitely many pairs $(i, j)$ with $10^k \leq a_i/a_j \leq 10^{k+1}.$

2002 Canada National Olympiad, 3

Prove that for all positive real numbers $a$, $b$, and $c$, \[ \frac{a^3}{bc} + \frac{b^3}{ca} + \frac{c^3}{ab} \geq a+b+c \] and determine when equality occurs.