This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

MMATHS Mathathon Rounds, 2021

[u]Round 6[/u] [b]p16.[/b] Let $ABC$ be a triangle with $AB = 3$, $BC = 4$, and $CA = 5$. There exist two possible points $X$ on $CA$ such that if $Y$ and $Z$ are the feet of the perpendiculars from $X$ to $AB$ and $BC,$ respectively, then the area of triangle $XY Z$ is $1$. If the distance between those two possible points can be expressed as $\frac{a\sqrt{b}}{c}$ for positive integers $a$, $b$, and $c$ with $b$ squarefree and $gcd(a, c) = 1$, then find $a +b+ c$. [b]p17.[/b] Let $f(n)$ be the number of orderings of $1,2, ... ,n$ such that each number is as most twice the number preceding it. Find the number of integers $k$ between $1$ and $50$, inclusive, such that $f (k)$ is a perfect square. [b]p18.[/b] Suppose that $f$ is a function on the positive integers such that $f(p) = p$ for any prime p, and that $f (xy) = f(x) + f(y)$ for any positive integers $x$ and $y$. Define $g(n) = \sum_{k|n} f (k)$; that is, $g(n)$ is the sum of all $f(k)$ such that $k$ is a factor of $n$. For example, $g(6) = f(1) + 1(2) + f(3) + f(6)$. Find the sum of all composite $n$ between $50$ and $100$, inclusive, such that $g(n) = n$. [u]Round 7[/u] [b]p19.[/b] AJ is standing in the center of an equilateral triangle with vertices labelled $A$, $B$, and $C$. They begin by moving to one of the vertices and recording its label; afterwards, each minute, they move to a different vertex and record its label. Suppose that they record $21$ labels in total, including the initial one. Find the number of distinct possible ordered triples $(a, b, c)$, where a is the number of $A$'s they recorded, b is the number of $B$'s they recorded, and c is the number of $C$'s they recorded. [b]p20.[/b] Let $S = \sum_{n=1}^{\infty} (1- \{(2 + \sqrt3)^n\})$, where $\{x\} = x - \lfloor x\rfloor$ , the fractional part of $x$. If $S =\frac{\sqrt{a} -b}{c}$ for positive integers $a, b, c$ with $a $ squarefree, find $a + b + c$. [b]p21.[/b] Misaka likes coloring. For each square of a $1\times 8$ grid, she flips a fair coin and colors in the square if it lands on heads. Afterwards, Misaka places as many $1 \times 2$ dominos on the grid as possible such that both parts of each domino lie on uncolored squares and no dominos overlap. Given that the expected number of dominos that she places can be written as $\frac{a}{b}$, for positive integers $a$ and $b$ with $gcd(a, b) = 1$, find $a + b$. PS. You should use hide for answers. Rounds 1-3 have been posted [url=https://artofproblemsolving.com/community/c4h3131401p28368159]here [/url] and 4-5 [url=https://artofproblemsolving.com/community/c4h3131422p28368457]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1998 Swedish Mathematical Competition, 6

Show that for some $c > 0$, we have $\left|\sqrt[3]{2} - \frac{m}{n}\right | > \frac{c}{n^3}$ for all integers $m, n$ with $n \ge 1$.

2017 BMT Spring, 8

Tags: algebra
If $xy = 15$ and $x + y = 11$, calculate the value of $x^3 + y^3$.

2010 Contests, 3

One point of the plane is called $rational$ if both coordinates are rational and $irrational$ if both coordinates are irrational. Check whether the following statements are true or false: [b]a)[/b] Every point of the plane is in a line that can be defined by $2$ rational points. [b]b)[/b] Every point of the plane is in a line that can be defined by $2$ irrational points. This maybe is not algebra so sorry if I putted it in the wrong category!

2020 LIMIT Category 2, 6

Tags: algebra , limit , function
Let $f(x)$ be a real-valued function satisfying $af(x)+bf(-x)=px^2+qx+r$. $a$ and $b$ are distinct real numbers and $p,q,r$ are non-zero real numbers. Then $f(x)=0$ will have real solutions when (A)$\left(\frac{a+b}{a-b}\right)\leq\frac{q^2}{4pr}$ (B)$\left(\frac{a+b}{a-b}\right)\leq\frac{4pr}{q^2}$ (C)$\left(\frac{a+b}{a-b}\right)\geq\frac{q^2}{4pr}$ (D)$\left(\frac{a+b}{a-b}\right)\geq\frac{4pr}{q^2}$

1950 AMC 12/AHSME, 3

The sum of the roots of the equation $ 4x^2\plus{}5\minus{}8x\equal{}0$ is equal to: $\textbf{(A)}\ 8 \qquad \textbf{(B)}\ -5 \qquad \textbf{(C)}\ -\dfrac{5}{4} \qquad \textbf{(D)}\ -2 \qquad \textbf{(E)}\ \text{None of these}$

1990 Vietnam National Olympiad, 2

Suppose $ f(x)\equal{}a_0x^n\plus{}a_1x^{n\minus{}1}\plus{}\ldots\plus{}a_{n\minus{}1}x\plus{}a_n$ ($ a_0\neq 0$) is a polynomial with real coefficients satisfying $ f(x)f(2x^2) \equal{} f(2x^3 \plus{} x)$ for all $ x \in\mathbb{R}$. Prove that $ f(x)$ has no real roots.

1985 Traian Lălescu, 2.3

Let $ z_1,z_2,z_3\in\mathbb{C} , $ different two by two, having the same modulus $ \rho . $ Show that: $$ \frac{1}{\left| z_1-z_2\right|\cdot \left| z_1-z_3\right|} +\frac{1}{\left| z_2-z_1\right|\cdot \left| z_2-z_3\right|} +\frac{1}{\left| z_3-z_1\right|\cdot \left| z_3-z_2\right|}\ge\frac{1}{\rho^2} . $$

1990 Baltic Way, 15

Prove that none of the numbers $2^{2^n}+ 1$, $n = 0, 1, 2, \dots$ is a perfect cube.

1989 Federal Competition For Advanced Students, P2, 6

Determine all functions $ f: \mathbb{N}_0 \rightarrow \mathbb{N}_0$ such that $ f(f(n))\plus{}f(n)\equal{}2n\plus{}6$ for all $ n \in \mathbb{N}_0$.

1966 Swedish Mathematical Competition, 1

Tags: limit , algebra , sequence
Let $\{x\}$ denote the fractional part of $x$, $x - [x]$. The sequences $x_1, x_2, x_3, ...$ and $y_1, y_2, y_3, ...$ are such that $\lim \{x_n\} = \lim \{y_n\} = 0$. Is it true that $\lim \{x_n + y_n\} = 0$? $\lim \{x_n - y_n\} = 0$?

2017 India PRMO, 14

Suppose $x$ is a positive real number such that $\{x\}, [x]$ and $x$ are in a geometric progression. Find the least positive integer $n$ such that $x^n > 100$. (Here $[x]$ denotes the integer part of $x$ and $\{x\} = x - [x]$.)

STEMS 2024 Math Cat B, P3

Tags: algebra
Let $r$, $s$ be real numbers, find maximum $t$ so that if $a_1, a_2, \ldots$ is a sequence of positive real numbers satisfying \[ a_1^r + a_2^r + \cdots + a_n^r \le 2023 \cdot n^t \] for all $n \ge 2023$ then the sum \[ b_n = \frac 1{a_1^s} + \cdots + \frac 1{a_n^s} \] is unbounded, i.e for all positive reals $M$ there is an $n$ such that $b_n > M$.

2006 ISI B.Stat Entrance Exam, 7

for any positive integer $n$ greater than $1$, show that \[2^n<\binom{2n}{n}<\frac{2^n}{\prod\limits_{i=0}^{n-1} \left(1-\frac{i}{n}\right)}\]

2002 Germany Team Selection Test, 1

Let $P$ denote the set of all ordered pairs $ \left(p,q\right)$ of nonnegative integers. Find all functions $f: P \rightarrow \mathbb{R}$ satisfying \[ f(p,q) \equal{} \begin{cases} 0 & \text{if} \; pq \equal{} 0, \\ 1 \plus{} \frac{1}{2} f(p+1,q-1) \plus{} \frac{1}{2} f(p-1,q+1) & \text{otherwise} \end{cases} \] Compare IMO shortlist problem 2001, algebra A1 for the three-variable case.

2023 JBMO Shortlist, A1

Prove that for all positive real numbers $a,b,c,d$, $$\frac{2}{(a+b)(c+d)+(b+c)(a+d)} \leq \frac{1}{(a+c)(b+d)+4ac}+\frac{1}{(a+c)(b+d)+4bd}$$ and determine when equality occurs.

2022 Harvard-MIT Mathematics Tournament, 5

Tags: algebra
Given a positive integer $k$, let $||k||$ denote the absolute difference between $k$ and the nearest perfect square. For example, $||13||=3$ since the nearest perfect square to $13$ is $16$. Compute the smallest positive integer $n$ such that $\frac{||1|| + ||2|| + ...+ ||n||}{n}=100$.

2007 Gheorghe Vranceanu, 2

Let be a function $ f:(0,\infty )\longrightarrow\mathbb{R} $ satisfying the following two properties: $ \text{(i) } 2\lfloor x \rfloor \le f(x) \le 2 \lfloor x \rfloor +2,\quad\forall x\in (0,\infty ) $ $ \text{(ii) } f\circ f $ is monotone Can $ f $ be non-monotone? Justify.

2023 European Mathematical Cup, 1

Tags: easy , algebra
Determine all sets of real numbers $S$ such that: [list] [*] $1$ is the smallest element of $S$, [*] for all $x,y\in S$ such that $x>y$, $\sqrt{x^2-y^2}\in S$ [/list] [i]Adian Anibal Santos Sepcic[/i]

2025 AIME, 15

Tags: algebra , function
Let \[f(x)=\frac{(x-18)(x-72)(x-98)(x-k)}{x}.\] There exist exactly three positive real values of $k$ such that $f$ has a minimum at exactly two real values of $x$. Find the sum of these three values of $k$.

2010 Brazil National Olympiad, 2

Let $P(x)$ be a polynomial with real coefficients. Prove that there exist positive integers $n$ and $k$ such that $k$ has $n$ digits and more than $P(n)$ positive divisors.

1980 IMO Longlists, 12

Find all pairs of solutions $(x,y)$: \[ x^3 + x^2y + xy^2 + y^3 = 8(x^2 + xy + y^2 + 1). \]

2005 MOP Homework, 7

Tags: algebra
Let $x_{1,1}$, $x_{2,1}$, ..., $x_{n,1}$, $n \ge 2$, be a sequence of integers and assume that not all $x_{i,1}$ are equal. For $k \ge 2$, if sequence $\{x_{i,k}\}^n_{i=1}$ is defined, we define sequence $\{x_{i,k+1}\}^n_{i=1}$ as \[x_{i,k+1}=\frac{1}{2}(x_{i,k}+x_{i+1,k}),\] for $i=1, 2, ..., n$, (where $x_{n+1,k}=x_{1,k}$). Show that if $n$ is odd then there exist indices $j$ and $k$ such that $x_{j,k}$ is not an integer.

1950 AMC 12/AHSME, 17

The formula which expresses the relationship between $x$ and $y$ as shown in the accompanying table is: \[ \begin{tabular}[t]{|c|c|c|c|c|c|}\hline x&0&1&2&3&4\\\hline y&100&90&70&40&0\\\hline \end{tabular}\] $\textbf{(A)}\ y=100-10x \qquad \textbf{(B)}\ y=100-5x^2 \qquad \textbf{(C)}\ y=100-5x-5x^2 \qquad\\ \textbf{(D)}\ y=20-x-x^2 \qquad \textbf{(E)}\ \text{None of these}$

2013 IFYM, Sozopol, 4

Find all pairs of integers $(m,n)$ such that $m^6 = n^{n+1} + n -1$.