This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2016 Miklós Schweitzer, 3

Prove that for any polynomial $P$ with real coefficients, and for any positive integer $n$, there exists a polynomial $Q$ with real coefficients such that $P(x)^2 +Q(x)^2$ is divisible by $(1+x^2)^n$.

2019 Tournament Of Towns, 1

The polynomial P(x,y) is such that for every integer n >= 0 each of the polynomials P(x,n) and P(n,y) either is a constant zero or has a degree not greater than n. Is it possible that P(x,x) has an odd degree?

2025 Caucasus Mathematical Olympiad, 4

Tags: algebra
Determine if there exist non-constant polynomials $P(x)$, $Q(x)$ and $R(x)$ with real coefficients and leading coefficient $1$, such that each of the polynomials \[ P(Q(x)), \quad Q(R(x)), \quad R(P(x)) \] has at least one real root, while each of the polynomials \[ Q(P(x)), \quad R(Q(x)), \quad P(R(x)) \] has no real roots.

2022 VN Math Olympiad For High School Students, Problem 5

Given [i]Fibonacci[/i] sequence $(F_n),$ and a positive integer $m$, denote $k(m)$ by the smallest positive integer satisfying $F_{n+k(m)}\equiv F_n(\bmod m),$ for all natural numbers $n$, $p$ is an odd prime such that $p \equiv \pm 1(\bmod 5)$. Prove that: a) ${5^{\frac{{p - 1}}{2}}} \equiv 1(\bmod p).$ b) ${F_{p - 1}} \equiv 0(\bmod p).$ c) $k(p)|p-1.$

2015 Mid-Michigan MO, 5-6

[b]p1.[/b] To every face of a given cube a new cube of the same size is glued. The resulting solid has how many faces? [b]p2.[/b] A father and his son returned from a fishing trip. To make their catches equal the father gave to his son some of his fish. If, instead, the son had given his father the same number of fish, then father would have had twice as many fish as his son. What percent more is the father's catch more than his son's? [b]p3.[/b] A radio transmitter has $4$ buttons. Each button controls its own switch: if the switch is OFF the button turns it ON and vice versa. The initial state of switches in unknown. The transmitter sends a signal if at least $3$ switches are ON. What is the minimal number of times you have to push the button to guarantee the signal is sent? [b]p4.[/b] $19$ matches are placed on a table to show the incorrect equation: $XXX + XIV = XV$. Move exactly one match to change this into a correct equation. [b]p5.[/b] Cut the grid shown into two parts of equal area by cutting along the lines of the grid. [img]https://cdn.artofproblemsolving.com/attachments/c/1/7f2f284acf3709c2f6b1bea08835d2fb409c44.png[/img] [b]p6.[/b] A family of funny dwarfs consists of a dad, a mom, and a child. Their names are: $A$, $R$, and $C$ (not in order). During lunch, $C$ made the statements: “$R$ and $A$ have different genders” and “$R$ and $A$ are my parents”, and $A$ made the statements “I am $C$'s dad” and “I am $R$'s daughter.” In fact, each dwarf told truth once and told a lie once. What is the name of the dad, what is the name of the child, and is the child a son or a daughter? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2020 Iran Team Selection Test, 3

We call a number $n$ [i]interesting [/i]if for each permutation $\sigma$ of $1,2,\ldots,n$ there exist polynomials $P_1,P_2,\ldots ,P_n$ and $\epsilon > 0$ such that: $i)$ $P_1(0)=P_2(0)=\ldots =P_n(0)$ $ii)$ $P_1(x)>P_2(x)>\ldots >P_n(x)$ for $-\epsilon<x<0$ $iii)$ $P_{\sigma (1)} (x)>P_{\sigma (2)}(x)> \ldots >P_{\sigma (n)} (x) $ for $0<x<\epsilon$ Find all [i]interesting [/i]$n$. [i]Proposed by Mojtaba Zare Bidaki[/i]

2023 Ukraine National Mathematical Olympiad, 9.4

Find the smallest real number $C$, such that for any positive integers $x \neq y$ holds the following: $$\min(\{\sqrt{x^2 + 2y}\}, \{\sqrt{y^2 + 2x}\})<C$$ Here $\{x\}$ denotes the fractional part of $x$. For example, $\{3.14\} = 0.14$. [i]Proposed by Anton Trygub[/i]

2023 IFYM, Sozopol, 5

Is it true that for any polynomial $P(x)$ with real coefficients of degree $2023$, there exists a natural number $n$ such that the equation $P(x) = n^{-100}$ has no rational root?

2000 Turkey Team Selection Test, 1

$(a)$ Prove that for every positive integer $n$, the number of ordered pairs $(x, y)$ of integers satisfying $x^2-xy+y^2 = n$ is divisible by $3.$ $(b)$ Find all ordered pairs of integers satisfying $x^2-xy+y^2=727.$

2016 CHMMC (Fall), 4

Tags: algebra
Compute $$\sum_{n=1}^{\infty} \frac{2^{n+1}}{8 \cdot 4^n - 6 \cdot 2^n +1}$$

1995 IMO Shortlist, 2

Let $ a$ and $ b$ be non-negative integers such that $ ab \geq c^2,$ where $ c$ is an integer. Prove that there is a number $ n$ and integers $ x_1, x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$ such that \[ \sum^n_{i\equal{}1} x^2_i \equal{} a, \sum^n_{i\equal{}1} y^2_i \equal{} b, \text{ and } \sum^n_{i\equal{}1} x_iy_i \equal{} c.\]

2020 Estonia Team Selection Test, 1

Let $a_1, a_2,...$ a sequence of real numbers. For each positive integer $n$, we denote $m_n =\frac{a_1 + a_2 +... + a_n}{n}$. It is known that there exists a real number $c$ such that for any different positive integers $i, j, k$: $(i - j) m_k + (j - k) m_i + (k - i) m_j = c$. Prove that the sequence $a_1, a_2,..$ is arithmetic

2009 Tuymaada Olympiad, 2

Tags: algebra , quadratic
$ P(x)$ is a quadratic trinomial. What maximum number of terms equal to the sum of the two preceding terms can occur in the sequence $ P(1)$, $ P(2)$, $ P(3)$, $ \dots?$ [i]Proposed by A. Golovanov[/i]

2004 Nicolae Coculescu, 1

Tags: algebra , equation
Find all pairs of integers $ (a,b) $ such that the equation $$ |x-1|+|x-a|+|x-b|=1 $$ has exactly one real solution. [i]Florian Dumitrel[/i]

2011 VJIMC, Problem 3

Let $p$ and $q$ be complex polynomials with $\deg p>\deg q$ and let $f(z)=\frac{p(z)}{q(z)}$. Suppose that all roots of $p$ lie inside the unit circle $|z|=1$ and that all roots of $q$ lie outside the unit circle. Prove that $$\max_{|z|=1}|f'(z)|>\frac{\deg p-\deg q}2\max_{|z|=1}|f(z)|.$$

1983 IMO Longlists, 9

Consider the set of all strictly decreasing sequences of $n$ natural numbers having the property that in each sequence no term divides any other term of the sequence. Let $A = (a_j)$ and $B = (b_j)$ be any two such sequences. We say that $A$ precedes $B$ if for some $k$, $a_k < b_k$ and $a_i = b_i$ for $i < k$. Find the terms of the first sequence of the set under this ordering.

1958 Poland - Second Round, 4

Tags: algebra
Prove that if $$ (a + b + c)^2 = 3 (ab + bc + ac - x^2 - y^2 - z^2),$$ where $ a $, $ b $, $ c $, $ x $, $ y $, $ z $ denote real numbers, then $ a = b = c $ and $ x = y = z = 0 $.

2023 Ukraine National Mathematical Olympiad, 11.5

Let's call a polynomial [i]mixed[/i] if it has both positive and negative coefficients ($0$ isn't considered positive or negative). Is the product of two mixed polynomials always mixed? [i]Proposed by Vadym Koval[/i]

2022 239 Open Mathematical Olympiad, 8

Prove that there is positive integers $N$ such that the equation $$arctan(N)=\sum_{i=1}^{2020} a_i arctan(i),$$ does not hold for any integers $a_{i}.$

2012 IberoAmerican, 3

Let $n$ to be a positive integer. Given a set $\{ a_1, a_2, \ldots, a_n \} $ of integers, where $a_i \in \{ 0, 1, 2, 3, \ldots, 2^n -1 \},$ $\forall i$, we associate to each of its subsets the sum of its elements; particularly, the empty subset has sum of its elements equal to $0$. If all of these sums have different remainders when divided by $2^n$, we say that $\{ a_1, a_2, \ldots, a_n \} $ is [i]$n$-complete[/i]. For each $n$, find the number of [i]$n$-complete[/i] sets.

1948 Moscow Mathematical Olympiad, 148

a) Find all positive integer solutions of the equation $x^y = y^x$ ($x \ne y$). b) Find all positive rational solutions of the equation $x^y = y^x$ ($x \ne y$).

2017 Balkan MO, 3

Tags: algebra
Let $\mathbb{N}$ denote the set of positive integers. Find all functions $f:\mathbb{N}\longrightarrow\mathbb{N}$ such that \[n+f(m)\mid f(n)+nf(m)\] for all $m,n\in \mathbb{N}$ [i]Proposed by Dorlir Ahmeti, Albania[/i]

KoMaL A Problems 2019/2020, A. 765

Find all functions $f:\mathbb{R}\to\mathbb{R}$ which satisfy the following equality for all $x,y\in\mathbb{R}$ \[f(x)f(y)-f(x-1)-f(y+1)=f(xy)+2x-2y-4.\][i]Proposed by Dániel Dobák, Budapest[/i]

2002 Tuymaada Olympiad, 3

Is there a quadratic trinomial with integer coefficients, such that all values which are natural to be natural powers of two?

2013 Saudi Arabia BMO TST, 5

Tags: algebra , polynomial , root
Let $k$ be a real number such that the product of real roots of the equation $$X^4 + 2X^3 + (2 + 2k)X^2 + (1 + 2k)X + 2k = 0$$ is $-2013$. Find the sum of the squares of these real roots.