This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1999 IMO, 6

Find all the functions $f: \mathbb{R} \to\mathbb{R}$ such that \[f(x-f(y))=f(f(y))+xf(y)+f(x)-1\] for all $x,y \in \mathbb{R} $.

2006 Stanford Mathematics Tournament, 10

Find the smallest positive $m$ for which there are at least 11 even and 11 odd positive integers $n$ so that $\tfrac{n^3+m}{n+2}$ is an integer.

1992 AIME Problems, 8

For any sequence of real numbers $A=(a_1,a_2,a_3,\ldots)$, define $\Delta A$ to be the sequence $(a_2-a_1,a_3-a_2,a_4-a_3,\ldots)$, whose $n^\text{th}$ term is $a_{n+1}-a_n$. Suppose that all of the terms of the sequence $\Delta(\Delta A)$ are $1$, and that $a_{19}=a_{92}=0$. Find $a_1$.

1999 Harvard-MIT Mathematics Tournament, 5

Let $f(x)=x+\cfrac{1}{2x+\cfrac{1}{2x+\cfrac{1}{2x+\cdots}}}$. Find $f(99)f^\prime (99)$.

2016 Azerbaijan Team Selection Test, 2

Find all polynomials $P(x)$ with real coefficents, such that for all $x,y,z$ satisfying $x+y+z=0$, the equation below is true: \[P(x+y)^3+P(y+z)^3+P(z+x)^3=3P((x+y)(y+z)(z+x))\]

1993 AIME Problems, 9

Two thousand points are given on a circle. Label one of the points 1. From this point, count 2 points in the clockwise direction and label this point 2. From the point labeled 2, count 3 points in the clockwise direction and label this point 3. (See figure.) Continue this process until the labels $1, 2, 3, \dots, 1993$ are all used. Some of the points on the circle will have more than one label and some points will not have a label. What is the smallest integer that labels the same point as 1993? [asy] int x=101, y=3*floor(x/4); draw(Arc(origin, 1, 360*(y-3)/x, 360*(y+4)/x)); int i; for(i=y-2; i<y+4; i=i+1) { dot(dir(360*i/x)); } label("3", dir(360*(y-2)/x), dir(360*(y-2)/x)); label("2", dir(360*(y+1)/x), dir(360*(y+1)/x)); label("1", dir(360*(y+3)/x), dir(360*(y+3)/x));[/asy]

1983 Poland - Second Round, 2

There are three non-negative numbers $ a, b, c $ such that the sum of each two is not less than the remaining one. Prove that $$ \sqrt{a+b-c} + \sqrt{a-b+c} + \sqrt{-a+b+c} \leq \sqrt{a} + \sqrt{b} + \sqrt{c}.$$

LMT Team Rounds 2021+, 8

Tags: algebra
Let $x, y$, and $z$ be positive reals that satisfy the system $$\begin{cases} x^2 + x y + y^2 = 10 \\ x^2 + xz + z^2 = 20 \\ y^2 + yz + z^2 = 30\end{cases}$$ Find $x y + yz + xz$.

2007 Austria Beginners' Competition, 2

Find all real solutions to the equation $$\lfloor x \rfloor ^2 + \lfloor x \rfloor= x^2-\frac14.$$

2009 Indonesia TST, 3

Tags: algebra
Find all triples $ (x,y,z)$ of positive real numbers which satisfy $ 2x^3 \equal{} 2y(x^2 \plus{} 1) \minus{} (z^2 \plus{} 1)$; $ 2y^4 \equal{} 3z(y^2 \plus{} 1) \minus{} 2(x^2 \plus{} 1)$; $ 2z^5 \equal{} 4x(z^2 \plus{} 1) \minus{} 3(y^2 \plus{} 1)$.

2004 China National Olympiad, 2

For a given positive integer $n\ge 2$, suppose positive integers $a_i$ where $1\le i\le n$ satisfy $a_1<a_2<\ldots <a_n$ and $\sum_{i=1}^n \frac{1}{a_i}\le 1$. Prove that, for any real number $x$, the following inequality holds \[\left(\sum_{i=1}^n\frac{1}{a_i^2+x^2}\right)^2\le\frac{1}{2}\cdot\frac{1}{a_1(a_1-1)+x^2} \] [i]Li Shenghong[/i]

1988 IMO, 1

Show that the solution set of the inequality \[ \sum^{70}_{k \equal{} 1} \frac {k}{x \minus{} k} \geq \frac {5}{4} \] is a union of disjoint intervals, the sum of whose length is 1988.

2011 Morocco National Olympiad, 3

Tags: algebra , function , search
Find all functions $f : \mathbb{R} \to \mathbb{R} $ which verify the relation \[(x-2)f(y)+f(y+2f(x))= f(x+yf(x)), \qquad \forall x,y \in \mathbb R.\]

1993 Turkey MO (2nd round), 4

Tags: algebra
$a_{n}$ is a sequence of positive integers such that, for every $n\geq 1$, $0<a_{n+1}-a_{n}<\sqrt{a_{n}}$. Prove that for every $x,y\in{R}$ such that $0<x<y<1$ $x< \frac{a_{k}}{a_{m}}<y$ we can find such $k,m\in{Z^{+}}$.

2023 ABMC, Speed

[i]25 problems for 30 minutes[/i] [b]p1.[/b] Compute $2^2 + 0 \cdot 0 + 2^2 + 3^3$. [b]p2.[/b] How many total letters (not necessarily distinct) are there in the names Jerry, Justin, Jackie, Jason, and Jeffrey? [b]p3.[/b] What is the remainder when $20232023$ is divided by $50$? [b]p4.[/b] Let $ABCD$ be a square. The fraction of the area of $ABCD$ that is the area of the intersection of triangles $ABD$ and $ABC$ can be expressed as $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$. [b]p5.[/b] Raymond is playing basketball. He makes a total of $15$ shots, all of which are either worth $2$ or $3$ points. Given he scored a total of $40$ points, how many $2$-point shots did he make? [b]p6.[/b] If a fair coin is flipped $4$ times, the probability that it lands on heads more often than tails is $\frac{a}{b}$ , where $a$ and $b$ relatively prime positive integers. Find $a + b$. [b]p7.[/b] What is the sum of the perfect square divisors of $640$? [b]p8.[/b] A regular hexagon and an equilateral triangle have the same perimeter. The ratio of the area between the hexagon and equilateral triangle can be expressed in the form $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$. [b]p9.[/b] If a cylinder has volume $1024\pi$, radius of $r$ and height $h$, how many ordered pairs of integers $(r, h)$ are possible? [b]p10.[/b] Pump $A$ can fill up a balloon in $3$ hours, while pump $B$ can fill up a balloon in $5$ hours. Pump $A$ starts filling up a balloon at $12:00$ PM, and pump $B$ is added alongside pump $A$ at a later time. If the balloon is completely filled at $2:00$ PM, how many minutes after $12:00$ PM was Pump $B$ added? [b]p11.[/b] For some positive integer $k$, the product $81 \cdot k$ has $20$ factors. Find the smallest possible value of $k$. [b]p12.[/b] Two people wish to sit in a row of fifty chairs. How many ways can they sit in the chairs if they do not want to sit directly next to each other and they do not want to sit with exactly one empty chair between them? [b]p13.[/b] Let $\vartriangle ABC$ be an equilateral triangle with side length $2$ and $M$ be the midpoint of $BC$. Let $P$ be a point in the same plane such that $2PM = BC$. The minimum value of $AP$ can be expressed as $\sqrt{a}-b$, where $a$ and $b$ are positive integers such that $a$ is not divisible by any perfect square aside from $1$. Find $a + b$. [b]p14.[/b] What are the $2022$nd to $2024$th digits after the decimal point in the decimal expansion of $\frac{1}{27}$ , expressed as a $3$ digit number in that order (i.e the $2022$nd digit is the hundreds digit, $2023$rd digit is the tens digit, and $2024$th digit is the ones digit)? [b]p15.[/b] After combining like terms, how many terms are in the expansion of $(xyz+xy+yz+xz+x+y+z)^{20}$? [b]p16.[/b] Let $ABCD$ be a trapezoid with $AB \parallel CD$ where $AB > CD$, $\angle B = 90^o$, and $BC = 12$. A line $k$ is dropped from $A$, perpendicular to line $CD$, and another line $\ell$ is dropped from $C$, perpendicular to line $AD$. $k$ and $\ell$ intersect at $X$. If $\vartriangle AXC$ is an equilateral triangle, the area of $ABCD$ can be written as $m\sqrt{n}$, where $m$ and $n$ are positive integers such that $n$ is not divisible by any perfect square aside from $1$. Find $m + n$. [b]p17.[/b] If real numbers $x$ and $y$ satisfy $2x^2 + y^2 = 8x$, maximize the expression $x^2 + y^2 + 4x$. [b]p18.[/b] Let $f(x)$ be a monic quadratic polynomial with nonzero real coefficients. Given that the minimum value of $f(x)$ is one of the roots of $f(x)$, and that $f(2022) = 1$, there are two possible values of $f(2023)$. Find the larger of these two values. [b]p19.[/b] I am thinking of a positive integer. After realizing that it is four more than a multiple of $3$, four less than a multiple of $4$, four more than a multiple of 5, and four less than a multiple of $7$, I forgot my number. What is the smallest possible value of my number? [b]p20.[/b] How many ways can Aston, Bryan, Cindy, Daniel, and Evan occupy a row of $14$ chairs such that none of them are sitting next to each other? [b]p21.[/b] Let $x$ be a positive real number. The minimum value of $\frac{1}{x^2} +\sqrt{x}$ can be expressed in the form \frac{a}{b^{(c/d)}} , where $a$, $b$, $c$, $d$ are all positive integers, $a$ and $b$ are relatively prime, $c$ and $d$ are relatively prime, and $b$ is not divisible by any perfect square. Find $a + b + c + d$. [b]p22.[/b] For all $x > 0$, the function $f(x)$ is defined as $\lfloor x \rfloor \cdot (x + \{x\})$. There are $24$ possible $x$ such that $f(x)$ is an integer between $2000$ and $2023$, inclusive. If the sum of these $24$ numbers equals $N$, then find $\lfloor N \rfloor$. Note: Recall that $\lfloor x \rfloor$ is the greatest integer less than or equal to $x$, called the floor function. Also, $\{x\}$ is defined as $x - \lfloor x \rfloor$, called the fractional part function. [b]p23.[/b] Let $ABCD$ be a rectangle with $AD = 1$. Let $P$ be a point on diagonal $\overline{AC}$, and let $\omega$ and $\xi$ be the circumcircles of $\vartriangle APB$ and $\vartriangle CPD$, respectively. Line $\overleftrightarrow{AD}$ is extended, intersecting $\omega$ at $X$, and $\xi$ at $Y$ . If $AX = 5$ and $DY = 2$, find $[ABCD]^2$. Note: $[ABCD]$ denotes the area of the polygon $ABCD$. [b]p24.[/b] Alice writes all of the three-digit numbers on a blackboard (it’s a pretty big blackboard). Let $X_a$ be the set of three-digit numbers containing a somewhere in its representation, where a is a string of digits. (For example, $X_{12}$ would include $12$, $121$, $312$, etc.) If Bob then picks a value of $a$ at random so $0 \le a \le 999$, the expected number of elements in $X_a$ can be expressed as $\frac{m}{n}$ , where $m$ and $n$ are relatively prime positive integers. Find$ m + n$. [b]p25.[/b] Let $f(x) = x^5 + 2x^4 - 2x^3 + 4x^2 + 5x + 6$ and $g(x) = x^4 - x^3 + x^2 - x + 1$. If $a$, $b$, $c$, $d$ are the roots of $g(x)$, then find $f(a) + f(b) + f(c) + f(d)$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2024 Bulgarian Winter Tournament, 9.1

Tags: algebra , easy
Find all real $x, y$, satisfying $$(x+1)^2(y+1)^2=27xy$$ and $$(x^2+1)(y^2+1)=10xy.$$

2022 District Olympiad, P3

A positive integer $n\geq 4$ is called [i]interesting[/i] if there exists a complex number $z$ such that $|z|=1$ and \[1+z+z^2+z^{n-1}+z^n=0.\] Find how many interesting numbers are smaller than $2022.$

2017 BMT Spring, 4

Tags: algebra
Find the value of $\frac12+\frac{4}{2^2} +\frac{9}{2^3} +\frac{16}{2^4} + ...$

2022 South Africa National Olympiad, 6

Show that there are infinitely many polynomials P with real coefficients such that if x, y, and z are real numbers such that $x^2+y^2+z^2+2xyz=1$, then $$P\left(x\right)^2+P\left(y\right)^2+P\left(z\right)^2+2P\left(x\right)P\left(y\right)P\left(z\right) = 1$$

2014 Regional Competition For Advanced Students, 3

The sequence $(a_n)$ is defined with the recursion $a_{n + 1} = 5a^6_n + 3a^3_{n-1} + a^2_{n-2}$ for $n\ge 2$ and the set of initial values $\{a_0, a_1, a_2\} = \{2013, 2014, 2015\}$. (That is, the initial values are these three numbers in any order.) Show that the sequence contains no sixth power of a natural number.

2007 Irish Math Olympiad, 1

Let $ r,s,$ and $ t$ be the roots of the cubic polynomial: $ p(x)\equal{}x^3\minus{}2007x\plus{}2002.$ Determine the value of: $ \frac{r\minus{}1}{r\plus{}1}\plus{}\frac{s\minus{}1}{s\plus{}1}\plus{}\frac{t\minus{}1}{t\plus{}1}$.

2023 AMC 12/AHSME, 14

For how many ordered pairs $(a,b)$ of integers does the polynomial $x^3+ax^2+bx+6$ have $3$ distinct integer roots? $\textbf{(A)}\ 5 \qquad\textbf{(B)}\ 6 \qquad\textbf{(C)}\ 8 \qquad\textbf{(D)}\ 7 \qquad\textbf{(E)}\ 4$

2012 Belarus Team Selection Test, 2

Determine all pairs $(f,g)$ of functions from the set of real numbers to itself that satisfy \[g(f(x+y)) = f(x) + (2x + y)g(y)\] for all real numbers $x$ and $y$. [i]Proposed by Japan[/i]

2007 Nicolae Coculescu, 4

Prove that there exists a nonconstant function $ f:\mathbb{R}^2\longrightarrow\mathbb{R} $ verifying the following system of relations: $$ \left\{ \begin{matrix} f(x,x+y)=f(x,y) ,& \quad \forall x,y\in\mathbb{R} \\f(x,y+z)=f(x,y) +f(x,z) ,& \quad \forall x,y\in\mathbb{R} \end{matrix} \right. $$

2022 Dutch IMO TST, 3

For real numbers $x$ and $y$ we define $M(x, y)$ to be the maximum of the three numbers $xy$, $(x- 1)(y - 1)$, and $x + y - 2xy$. Determine the smallest possible value of $M(x, y)$ where $x$ and $y$ range over all real numbers satisfying $0 \le x, y \le 1$.