Found problems: 15925
2007 Putnam, 4
A [i]repunit[/i] is a positive integer whose digits in base $ 10$ are all ones. Find all polynomials $ f$ with real coefficients such that if $ n$ is a repunit, then so is $ f(n).$
2012 Vietnam Team Selection Test, 1
Consider the sequence $(x_n)_{n\ge 1}$ where $x_1=1,x_2=2011$ and $x_{n+2}=4022x_{n+1}-x_n$ for all $n\in\mathbb{N}$. Prove that $\frac{x_{2012}+1}{2012}$ is a perfect square.
2008 Canada National Olympiad, 3
Let $ a$, $ b$, $ c$ be positive real numbers for which $ a \plus{} b \plus{} c \equal{} 1$. Prove that
\[ {{a\minus{}bc}\over{a\plus{}bc}} \plus{} {{b\minus{}ca}\over{b\plus{}ca}} \plus{} {{c\minus{}ab}\over{c\plus{}ab}}
\leq {3 \over 2}.\]
2021 Estonia Team Selection Test, 2
Find all polynomials $P(x, y)$ with real coefficients which for all real numbers $x$ and $y$ satisfy $P(x + y, x - y) = 2P(x, y)$.
2007 Balkan MO Shortlist, C2
Let $\mathcal{F}$ be the set of all the functions $f : \mathcal{P}(S) \longrightarrow \mathbb{R}$ such that for all $X, Y \subseteq S$, we have $f(X \cap Y) = \min (f(X), f(Y))$, where $S$ is a finite set (and $\mathcal{P}(S)$ is the set of its subsets). Find
\[\max_{f \in \mathcal{F}}| \textrm{Im}(f) |. \]
2000 Junior Balkan Team Selection Tests - Romania, 3
Find all real numbers $ a $ such that $ x,y>a\implies x+y+xy>a. $
[i]Gheorghe Iurea[/i]
1999 National Olympiad First Round, 24
Polynomial $ f\left(x\right)$ satisfies $ \left(x \minus{} 1\right)f\left(x \plus{} 1\right) \minus{} \left(x \plus{} 2\right)f\left(x\right) \equal{} 0$ for every $ x\in \Re$. If $ f\left(2\right) \equal{} 6$, $ f\left({\tfrac{3}{2}} \right) \equal{} ?$
$\textbf{(A)}\ -6 \qquad\textbf{(B)}\ 0 \qquad\textbf{(C)}\ \frac {3}{2} \qquad\textbf{(D)}\ \frac {15}{8} \qquad\textbf{(E)}\ \text{None}$
LMT Team Rounds 2021+, 1
Given the following system of equations:
$$\begin{cases} R I +G +SP = 50 \\ R I +T + M = 63 \\ G +T +SP = 25 \\ SP + M = 13 \\ M +R I = 48 \\ N = 1 \end{cases}$$
Find the value of L that makes $LMT +SPR I NG = 2023$ true.
2022 ELMO Revenge, 1
In terms of $p$ and $k$, compute the number of solutions in positive integers to the equation
$ab+bc+ca=p^{2k}$ satisfying $a\leq b\leq c$ where $p$ is a fixed prime and $k$ is a fixed positive integer.
[i]Proposed by Alexander Wang[/i]
2006 Germany Team Selection Test, 1
Let $ a$, $ b$, $ c$, $ d$, $ e$, $ f$ be positive integers and let $ S = a+b+c+d+e+f$.
Suppose that the number $ S$ divides $ abc+def$ and $ ab+bc+ca-de-ef-df$. Prove that $ S$ is composite.
1983 AIME Problems, 4
A machine-shop cutting tool has the shape of a notched circle, as shown. The radius of the circle is $\sqrt{50}$ cm, the length of $AB$ is 6 cm, and that of $BC$ is 2 cm. The angle $ABC$ is a right angle. Find the square of the distance (in centimeters) from $B$ to the center of the circle.
[asy]
size(150); defaultpen(linewidth(0.65)+fontsize(11));
real r=10;
pair O=(0,0),A=r*dir(45),B=(A.x,A.y-r),C;
path P=circle(O,r);
C=intersectionpoint(B--(B.x+r,B.y),P);
draw(Arc(O, r, 45, 360-17.0312));
draw(A--B--C);dot(A); dot(B); dot(C);
label("$A$",A,NE);
label("$B$",B,SW);
label("$C$",C,SE);
[/asy]
2021 Caucasus Mathematical Olympiad, 8
An infinite table whose rows and columns are numbered with positive integers, is given. For a sequence of functions
$f_1(x), f_2(x), \ldots $ let us place the number $f_i(j)$ into the cell $(i,j)$ of the table (for all $i, j\in \mathbb{N}$).
A sequence $f_1(x), f_2(x), \ldots $ is said to be {\it nice}, if all the numbers in the table are positive integers, and each positive integer appears exactly once. Determine if there exists a nice sequence of functions $f_1(x), f_2(x), \ldots $, such that each $f_i(x)$ is a polynomial of degree 101 with integer coefficients and its leading coefficient equals to 1.
2025 Polish MO Finals, 1
Find all $(a, b, c, d)\in \mathbb{R}$ satisfying
\[\begin{aligned}
\begin{cases}
a+b+c+d=0,\\
a^2+b^2+c^2+d^2=12,\\
abcd=-3.\\
\end{cases}
\end{aligned}\]
2012 Kosovo National Mathematical Olympiad, 3
Solve the recurrence $R_0=1, R_n=nR_{n-1}+2^n\cdot n!$.
2018 Serbia JBMO TST, 2
Show that for $a,b,c > 0$ the following inequality holds:
$\frac{\sqrt{ab}}{a+b+2c}+\frac{\sqrt{bc}}{b+c+2a}+\frac{\sqrt{ca}}{c+a+2b} \le \frac {3}{4}$.
ABMC Online Contests, 2018 Oct
[b]p1.[/b] Compute the greatest integer less than or equal to $$\frac{10 + 12 + 14 + 16 + 18 + 20}{21}$$
[b]p2.[/b] Let$ A = 1$.$B = 2$, $C = 3$, $...$, $Z = 26$. Find $A + B +M + C$.
[b]p3.[/b] In Mr. M's farm, there are $10$ cows, $8$ chickens, and $4$ spiders. How many legs are there (including Mr. M's legs)?
[b]p4.[/b] The area of an equilateral triangle with perimeter $18$ inches can be expressed in the form $a\sqrt{b}{c}$ , where $a$ and $c$ are relatively prime and $b$ is not divisible by the square of any prime. Find $a + b + c$.
[b]p5.[/b] Let $f$ be a linear function so $f(x) = ax + b$ for some $a$ and $b$. If $f(1) = 2017$ and $f(2) = 2018$, what is $f(2019)$?
[b]p6.[/b] How many integers $m$ satisfy $4 < m^2 \le 216$?
[b]p7.[/b] Allen and Michael Phelps compete at the Olympics for swimming. Allen swims $\frac98$ the distance Phelps swims, but Allen swims in $\frac59$ of Phelps's time. If Phelps swims at a rate of $3$ kilometers per hour, what is Allen's rate of swimming? The answer can be expressed as $m/n$ for relatively prime positive integers $m, n$. Find $m + n$.
[b]p8.[/b] Let $X$ be the number of distinct arrangements of the letters in "POONAM," $Y$ be the number of distinct arrangements of the letters in "ALLEN" and $Z$ be the number of distinct arrangements of the letters in "NITHIN." Evaluate $\frac{X+Z}{Y}$ :
[b]p9.[/b] Two overlapping circles, both of radius $9$ cm, have centers that are $9$ cm apart. The combined area of the two circles can be expressed as $\frac{a\pi+b\sqrt{c}+d}{e}$ where $c$ is not divisible by the square of any prime and the fraction is simplified. Find $a + b + c + d + e$.
[b]p10.[/b] In the Boxborough-Acton Regional High School (BARHS), $99$ people take Korean, $55$ people take Maori, and $27$ people take Pig Latin. $4$ people take both Korean and Maori, $6$ people take both Korean and Pig Latin, and $5$ people take both Maori and Pig Latin. $1$ especially ambitious person takes all three languages, and and $100$ people do not take a language. If BARHS does not oer any other languages, how many students attend BARHS?
[b]p11.[/b] Let $H$ be a regular hexagon of side length $2$. Let $M$ be the circumcircle of $H$ and $N$ be the inscribed circle of $H$. Let $m, n$ be the area of $M$ and $N$ respectively. The quantity $m - n$ is in the form $\pi a$, where $a$ is an integer. Find $a$.
[b]p12.[/b] How many ordered quadruples of positive integers $(p, q, r, s)$ are there such that $p + q + r + s \le 12$?
[b]p13.[/b] Let $K = 2^{\left(1+ \frac{1}{3^2} \right)\left(1+ \frac{1}{3^4} \right)\left(1+ \frac{1}{3^8}\right)\left(1+ \frac{1}{3^{16}} \right)...}$. What is $K^8$?
[b]p14.[/b] Neetin, Neeton, Neethan, Neethine, and Neekhil are playing basketball. Neetin starts out with the ball. How many ways can they pass 5 times so that Neethan ends up with the ball?
[b]p15.[/b] In an octahedron with side lengths $3$, inscribe a sphere. Then inscribe a second sphere tangent to the first sphere and to $4$ faces of the octahedron. The radius of the second sphere can be expressed in the form $\frac{\sqrt{a}-\sqrt{b}}{c}$ , where the square of any prime factor of $c$ does not evenly divide into $b$. Compute $a + b + c$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 India National Olympiad, 3
Define a sequence $<f_0 (x), f_1 (x), f_2 (x), \dots>$ of functions by $$f_0 (x) = 1$$ $$f_1(x)=x$$ $$(f_n(x))^2 - 1 = f_{n+1}(x) f_{n-1}(x)$$ for $n \ge 1$. Prove that each $f_n (x)$ is a polynomial with integer coefficients.
2022 JBMO Shortlist, A1
Find all pairs of positive integers $(a, b)$ such that $$11ab \le a^3 - b^3 \le 12ab.$$
1983 IMO Shortlist, 21
Find the greatest integer less than or equal to $\sum_{k=1}^{2^{1983}} k^{\frac{1}{1983} -1}.$
2023 Bulgaria National Olympiad, 5
For every positive integer $n$ determine the least possible value of the expression
\[|x_{1}|+|x_{1}-x_{2}|+|x_{1}+x_{2}-x_{3}|+\dots +|x_{1}+x_{2}+\dots +x_{n-1}-x_{n}|\]
given that $x_{1}, x_{2}, \dots , x_{n}$ are real numbers satisfying $|x_{1}|+|x_{2}|+\dots+|x_{n}| = 1$.
2006 Stanford Mathematics Tournament, 11
Polynomial $P(x)=c_{2006}x^{2006}+c_{2005}x^{2005}+\ldots+c_1x+c_0$ has roots $r_1,r_2,\ldots,r_{2006}$. The coefficients satisfy $2i\tfrac{c_i}{c_{2006}-i}=2j\tfrac{c_j}{c_{2006}-j}$ for all pairs of integers $0\le i,j\le2006$. Given that $\sum_{i\ne j,i=1,j=1}^{2006} \tfrac{r_i}{r_j}=42$, determine $\sum_{i=1}^{2006} (r_1+r_2+\ldots+r_{2006})$.
1995 Tuymaada Olympiad, 2
Let $x_1=a, x_2=a^{x_1}, ..., x_n=a^{x_{n-1}}$ where $a>1$. What is the maximum value of $a$ for which lim exists $\lim_{n\to \infty} x_n$ and what is this limit?
1984 IMO Shortlist, 1
Find all solutions of the following system of $n$ equations in $n$ variables:
\[\begin{array}{c}\ x_1|x_1| - (x_1 - a)|x_1 - a| = x_2|x_2|,x_2|x_2| - (x_2 - a)|x_2 - a| = x_3|x_3|,\ \vdots \ x_n|x_n| - (x_n - a)|x_n - a| = x_1|x_1|\end{array}\]
where $a$ is a given number.
2013 China Team Selection Test, 3
Let $n>1$ be an integer and let $a_0,a_1,\ldots,a_n$ be non-negative real numbers. Definite $S_k=\sum_{i\equal{}0}^k \binom{k}{i}a_i$ for $k=0,1,\ldots,n$. Prove that\[\frac{1}{n} \sum_{k\equal{}0}^{n-1} S_k^2-\frac{1}{n^2}\left(\sum_{k\equal{}0}^{n} S_k\right)^2\le \frac{4}{45} (S_n-S_0)^2.\]
2021 LMT Spring, B7
Given that $x$ and $y$ are positive real numbers such that $\frac{5}{x}=\frac{y}{13}=\frac{x}{y}$, find the value of $x^3 + y^3$.
Proposed by Ephram Chun