Found problems: 15925
Kvant 2024, M2797
For real numbers $0 \leq a_1 \leq a_2 \leq ... \leq a_n$ and $0 \leq b_1 \leq b_2 \leq ... \leq b_n$ prove that \[ \left( \frac{a_1}{1 \cdot 2}+\frac{a_2}{2 \cdot 3}+...+\frac{a_n}{n(n+1)} \right) \times \left( \frac{b_1}{1 \cdot 2}+\frac{b_2}{2 \cdot 3}+...+\frac{b_n}{n(n+1)} \right) \leq \frac{a_1b_1}{1 \cdot 2}+\frac{a_2b_2}{2 \cdot 3}+...+\frac{a_nb_n}{n(n+1)}.\]
[i]Proposed by A. Antropov[/i]
2021 Middle European Mathematical Olympiad, 1
Determine all real numbers A such that every sequence of non-zero real numbers $x_1, x_2, \ldots$ satisfying
\[ x_{n+1}=A-\frac{1}{x_n} \]
for every integer $n \ge 1$, has only finitely many negative terms.
1997 Romania National Olympiad, 3
Suppose that $a,b,c,d\in\mathbb{R}$ and $f(x)=ax^3+bx^2+cx+d$ such that $f(2)+f(5)<7<f(3)+f(4)$. Prove that there exists $u,v\in\mathbb{R}$ such that $u+v=7 , f(u)+f(v)=7$
2012 Princeton University Math Competition, A7 / B8
Let $a_n$ be a sequence such that $a_1 = 1$ and $a_{n+1} = \lfloor a_n +\sqrt{a_n} +\frac12 \rfloor $, where $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$. What are the last four digits of $a_{2012}$?
2009 Princeton University Math Competition, 8
The real numbers $x$, $y$, $z$, and $t$ satisfy the following equation:
\[2x^2 + 4xy + 3y^2 - 2xz -2 yz + z^2 + 1 = t + \sqrt{y + z - t} \]
Find 100 times the maximum possible value for $t$.
2014 IMO Shortlist, A6
Find all functions $f : \mathbb{Z} \to\mathbb{ Z}$ such that
\[ n^2+4f(n)=f(f(n))^2 \]
for all $n\in \mathbb{Z}$.
[i]Proposed by Sahl Khan, UK[/i]
1994 All-Russian Olympiad Regional Round, 10.6
Find the free coefficient of the polynomial $P(x)$ with integer coefficients, knowing that it is less than $1000$ in absolute value and that $P(19) = P(94) = 1994$.
1974 Swedish Mathematical Competition, 2
Show that
\[
1 - \frac{1}{k} \leq n\left(\sqrt[n]{k}-1\right) \leq k - 1
\]
for all positive integers $n$ and positive reals $k$.
2011 Mathcenter Contest + Longlist, 8 sl12
Let $a,b,c\in\mathbb{R^+}$. Prove that $$\frac{a^{11}}{b^5c^5}+\frac{b^{11}}{ c^5a^5}+\frac{c^{11}}{a^5b^5}\ge a+b+c$$ [i](Real Matrik)[/i]
2022 BmMT, Ind. Round
[b]p1.[/b] Nikhil computes the sum of the first $10$ positive integers, starting from $1$. He then divides that sum by 5. What remainder does he get?
[b]p2.[/b] In class, starting at $8:00$, Ava claps her hands once every $4$ minutes, while Ella claps her hands once every $6$ minutes. What is the smallest number of minutes after $8:00$ such that both Ava and Ella clap their hands at the same time?
[b]p3.[/b] A triangle has side lengths $3$, $4$, and $5$. If all of the side lengths of the triangle are doubled, how many times larger is the area?
[b]p4.[/b] There are $50$ students in a room. Every student is wearing either $0$, $1$, or $2$ shoes. An even number of the students are wearing exactly $1$ shoe. Of the remaining students, exactly half of them have $2$ shoes and half of them have $0$ shoes. How many shoes are worn in total by the $50$ students?
[b]p5.[/b] What is the value of $-2 + 4 - 6 + 8 - ... + 8088$?
[b]p6.[/b] Suppose Lauren has $2$ cats and $2$ dogs. If she chooses $2$ of the $4$ pets uniformly at random, what is the probability that the 2 chosen pets are either both cats or both dogs?
[b]p7.[/b] Let triangle $\vartriangle ABC$ be equilateral with side length $6$. Points $E$ and $F$ lie on $BC$ such that $E$ is closer to $B$ than it is to $C$ and $F$ is closer to $C$ than it is to $B$. If $BE = EF = FC$, what is the area of triangle $\vartriangle AFE$?
[b]p8.[/b] The two equations $x^2 + ax - 4 = 0$ and $x^2 - 4x + a = 0$ share exactly one common solution for $x$. Compute the value of $a$.
[b]p9.[/b] At Shreymart, Shreyas sells apples at a price $c$. A customer who buys $n$ apples pays $nc$ dollars, rounded to the nearest integer, where we always round up if the cost ends in $.5$. For example, if the cost of the apples is $4.2$ dollars, a customer pays $4$ dollars. Similarly, if the cost of the apples is $4.5$ dollars, a customer pays $5$ dollars. If Justin buys $7$ apples for $3$ dollars and $4$ apples for $1$ dollar, how many dollars should he pay for $20$ apples?
[b]p10.[/b] In triangle $\vartriangle ABC$, the angle trisector of $\angle BAC$ closer to $\overline{AC}$ than $\overline{AB}$ intersects $\overline{BC}$ at $D$. Given that triangle $\vartriangle ABD$ is equilateral with area $1$, compute the area of triangle $\vartriangle ABC$.
[b]p11.[/b] Wanda lists out all the primes less than $100$ for which the last digit of that prime equals the last digit of that prime's square. For instance, $71$ is in Wanda's list because its square, $5041$, also has $1$ as its last digit. What is the product of the last digits of all the primes in Wanda's list?
[b]p12.[/b] How many ways are there to arrange the letters of $SUSBUS$ such that $SUS$ appears as a contiguous substring? For example, $SUSBUS$ and $USSUSB$ are both valid arrangements, but $SUBSSU$ is not.
[b]p13.[/b] Suppose that $x$ and $y$ are integers such that $x \ge 5$, $y \ge 3$, and $\sqrt{x - 5} +\sqrt{y - 3} =
\sqrt{x + y}$. Compute the maximum possible value of $xy$.
[b]p14.[/b] What is the largest integer $k$ divisible by $14$ such that $x^2-100x+k = 0$ has two distinct integer roots?
[b]p15.[/b] What is the sum of the first $16$ positive integers whose digits consist of only $0$s and $1$s?
[b]p16.[/b] Jonathan and Ajit are flipping two unfair coins. Jonathan's coin lands on heads with probability $\frac{1}{20}$ while Ajit's coin lands on heads with probability $\frac{1}{22}$ . Each year, they flip their coins at thesame time, independently of their previous flips. Compute the probability that Jonathan's coin lands on heads strictly before Ajit's coin does.
[b]p17.[/b] A point is chosen uniformly at random in square $ABCD$. What is the probability that it is closer to one of the $4$ sides than to one of the $2$ diagonals?
[b]p18.[/b] Two integers are coprime if they share no common positive factors other than $1$. For example, $3$ and $5$ are coprime because their only common factor is $1$. Compute the sum of all positive integers that are coprime to $198$ and less than $198$.
[b]p19.[/b] Sumith lists out the positive integer factors of $12$ in a line, writing them out in increasing order as $1$, $2$, $3$, $4$, $6$, $12$. Luke, being the mischievious person he is, writes down a permutation of those factors and lists it right under Sumith's as $a_1$, $a_2$, $a_3$, $a_4$, $a_5$, $a_6$. Luke then calculates $$gcd(a_1, 2a_2, 3a_3, 4a_4, 6a_5, 12a_6).$$ Given that Luke's result is greater than $1$, how many possible permutations could he have written?
[b]p20.[/b] Tetrahedron $ABCD$ is drawn such that $DA = DB = DC = 2$, $\angle ADB = \angle ADC = 90^o$, and $\angle BDC = 120^o$. Compute the radius of the sphere that passes through $A$, $B$, $C$, and $D$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2009 China Team Selection Test, 6
Determine whether there exists an arithimethical progression consisting of 40 terms and each of whose terms can be written in the form $ 2^m \plus{} 3^n$ or not. where $ m,n$ are nonnegative integers.
1980 IMO Shortlist, 3
Prove that the equation \[ x^n + 1 = y^{n+1}, \] where $n$ is a positive integer not smaller then 2, has no positive integer solutions in $x$ and $y$ for which $x$ and $n+1$ are relatively prime.
2011 Kosovo National Mathematical Olympiad, 2
It is given the function $f:\left( \mathbb{R} - \{0\} \right) \times \left( \mathbb{R}-\{0\} \right) \to \mathbb{R}$ such that $f(a,b)= \left| \frac{|b-a|}{|ab|}+\frac{b+a}{ab}-1 \right|+ \frac{|b-a|}{|ab|}+ \frac{b+a}{ab}+1$ where $a,b \not=0$. Prove that:
\[ f(a,b)=4 \cdot \text{max} \left\{\frac{1}{a},\frac{1}{b},\frac{1}{2} \right\}\]
2024 China Western Mathematical Olympiad, 2
Find all integers $k$, such that there exists an integer sequence ${\{a_n\}}$ satisfies two conditions below
(1) For all positive integers $n$,$a_{n+1}={a_n}^3+ka_n+1$
(2) $|a_n| \leq M$ holds for some real $M$
1971 Polish MO Finals, 5
Find the largest integer $A$ such that, for any permutation of the natural numbers not exceeding $100$, the sum of some ten successive numbers is at least $A$.
1967 Swedish Mathematical Competition, 5
$a_1, a_2, a_3, ...$ are positive reals such that $a_n^2 \ge a_1 + a_2 +... + a_{n-1}$.
Show that for some $C > 0$ we have $a_n \ge C n$ for all $n$.
2014-2015 SDML (High School), 6
Find the largest integer $k$ such that $$k\leq\sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+\sqrt[5]{\frac{5}{4}}+\cdots+\sqrt[2015]{\frac{2015}{2014}}.$$
2021 BMT, 20
For some positive integer $n$, $(1 + i) + (1 + i)^2 + (1 + i)^3 + ... + (1 + i)^n = (n^2 - 1)(1 - i)$, where $i = \sqrt{-1}$. Compute the value of $n$.
2004 Thailand Mathematical Olympiad, 18
Find positive reals $a, b, c$ which maximizes the value of $abc$ subject to the constraint that $b(a^2 + 2) + c(a + 2) = 12$.
2024 Taiwan TST Round 3, 6
Find all positive integers $n$ and sequence of integers $a_0,a_1,\ldots, a_n$ such that the following hold:
1. $a_n\neq 0$;
2. $f(a_{i-1})=a_i$ for all $i=1,\ldots, n$, where $f(x) = a_nx^n+a_{n-1}x^{n-1}+\cdots +a_0$.
[i]
Proposed by usjl[/i]
2018 Costa Rica - Final Round, 2
Let $a, b, c$, and $d$ be real numbers. The six sums of two numbers $x$ and $y$, different from the previous four, are $117$, $510$, $411$, $252$, in no particular order. Determine the maximum possible value of $x + y$.
2018 Peru IMO TST, 5
Let $d$ be a positive integer.
The seqeunce $a_1, a_2, a_3,...$ of positive integers is defined by $a_1 = 1$ and $a_{n + 1} = n\left \lfloor \frac{a_n}{n} \right \rfloor+ d$ for $n = 1,2,3, ...$ .
Prove that there exists a positive integer $N$ so that the terms $a_N,a_{N + 1}, a_{N + 2},...$ form an arithmetic progression.
Note: If $x$ is a real number, $\left \lfloor x \right \rfloor $ denotes the largest integer that is less than or equal to $x$.
1991 IMTS, 2
Find the smallest positive integer, $n$, which can be expressed as the sum of distinct positive integers $a,b,c$ such that $a+b,a+c,b+c$ are perfect squares.
2011 Laurențiu Duican, 1
Let $ A $ be a nonempty set of real numbers, and let be two functions $ f,g:A\longrightarrow A $ having the following properties:
$ \text{(i)} f $ is increasing
$ \text{(ii)} f-g $ is nonpositive everywhere
$ \text{(iii)} f(A)\subset g(A) $
[b]a)[/b] Prove that $ f=g $ if $ A $ is the set of all nonnegative integers.
[b]b)[/b] Is true that $ f=g $ if $ A $ is the set of all integers?
[i]Dorel Miheț[/i]
2011 Indonesia TST, 1
Let $a, b, c$ be the sides of a triangle with $abc = 1$. Prove that
$$\frac{\sqrt{b + c -a}}{a}+\frac{\sqrt{c + a - b}}{b}+\frac{\sqrt{a + b - c}}{c} \ge a + b + c$$