This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2017 Harvard-MIT Mathematics Tournament, 4

Tags: algebra
[b]M[/b]ary has a sequence $m_2,m_3,m_4,...$ , such that for each $b \ge 2$, $m_b$ is the least positive integer m for which none of the base-$b$ logarithms $log_b(m),log_b(m+1),...,log_b(m+2017)$ are integers. Find the largest number in her sequence.

2024 Dutch IMO TST, 2

Find all functions $f:\mathbb{Z}_{>0} \to \mathbb{Z}_{>0}$ such that for all positive integers $m,n$ and $a$ we have a) $f(f(m)f(n))=mn$ and b) $f(2024a+1)=2024a+1$.

2024-IMOC, A7

Tags: function , algebra , real
Given positive integers $n$, $P_1$, $P_2$, …$P_n$ and two sets \[B=\{ (a_1,a_2,…,a_n)|a_i=0 \vee 1,\ \forall i \in \mathbb{N} \}, S=\{ (x_1,x_2,…,x_n)|1 \leq x_i \leq P_i \wedge x_i \in \mathbb{N} ,\ \forall i \in \mathbb{N} \}\] A function $f:S \to \mathbb{Z}$ is called [b]Real[/b], if and only if for any positive integers $(y_1,y_2,…,y_n)$ and positive integer $a$ which satisfied $ 1 \leq y_i \leq P_i-a$ $\forall i \in \mathbb{N}$, we always have: \begin{align*} \sum_{(a_1,a_2,…,a_n) \in B \wedge 2| \sum_{i=1}^na_i}f(y+a \times a_1,y+a \times a_2,……,y+a \times a_n)&>\\ \sum_{(a_1,a_2,…,a_n) \in B \wedge 2 \nmid \sum_{i=1}^na_i}f(y+a \times a_1,y+a \times a_2,……,y+a \times a_n)&. \end{align*} Find the minimum of $\sum_{i_1=1}^{P_1}\sum_{i_2=1}^{P_2}....\sum_{i_n=1}^{P_n}|f(i_1,i_2,...,i_n)|$, where $f$ is a [b]Real[/b] function. [i]Proposed by tob8y[/i]

2023 BMT, 5

Two parabolas, $y = ax^2 + bx + c$ and $y = -ax^2- bx - c$, intersect at $x = 2$ and $x = -2$. If the $y$-intercepts of the two parabolas are exactly $2$ units apart from each other, compute $|a+b+c|$.

2023 Iran Team Selection Test, 5

Find all injective $f:\mathbb{Z}\ge0 \to \mathbb{Z}\ge0 $ that for every natural number $n$ and real numbers $a_0,a_1,...,a_n$ (not everyone equal to $0$), polynomial $\sum_{i=0}^{n}{a_i x^i}$ have real root if and only if $\sum_{i=0}^{n}{a_i x^{f(i)}}$ have real root. [i]Proposed by Hesam Rajabzadeh [/i]

2022 Israel Olympic Revenge, 3

Determine if there exist positive real numbers $x, \alpha$, so that for any non-empty finite set of positive integers $S$, the inequality \[\left|x-\sum_{s\in S}\frac{1}{s}\right|>\frac{1}{\max(S)^\alpha}\] holds, where $\max(S)$ is defined as the maximum element of the finite set $S$.

2022 Greece Team Selection Test, 3

Find largest possible constant $M$ such that, for any sequence $a_n$, $n=0,1,2,...$ of real numbers, that satisfies the conditions : i) $a_0=1$, $a_1=3$ ii) $a_0+a_1+...+a_{n-1} \ge 3 a_n - a_{n+1}$ for any integer $n\ge 1$ to be true that $$\frac{a_{n+1}}{a_n} >M$$ for any integer $n\ge 0$.

2009 Korea National Olympiad, 4

Tags: function , algebra
For a positive integer $n$, define a function $ f_n (x) $ at an interval $ [ 0, n+1 ] $ as \[ f_n (x) = ( \sum_{i=1} ^ {n} | x-i | )^2 - \sum_{i=1} ^{n} (x-i)^2 . \] Let $ a_n $ be the minimum value of $f_n (x) $. Find the value of \[ \sum_{n=1}^{11} (-1)^{n+1} a_n . \]

2024 BAMO, 4

Find all polynomials $f$ that satisfy the equation \[\frac{f(3x)}{f(x)} = \frac{729 (x-3)}{x-243}\] for infinitely many real values of $x$.

2005 Junior Balkan Team Selection Tests - Romania, 18

Tags: algebra
Consider two distinct positive integers $a$ and $b$ having integer arithmetic, geometric and harmonic means. Find the minimal value of $|a-b|$. [i]Mircea Fianu[/i]

2020 Balkan MO, 2

Tags: algebra
Denote $\mathbb{Z}_{>0}=\{1,2,3,...\}$ the set of all positive integers. Determine all functions $f:\mathbb{Z}_{>0}\rightarrow \mathbb{Z}_{>0}$ such that, for each positive integer $n$, $\hspace{1cm}i) \sum_{k=1}^{n}f(k)$ is a perfect square, and $\vspace{0.1cm}$ $\hspace{1cm}ii) f(n)$ divides $n^3$. [i]Proposed by Dorlir Ahmeti, Albania[/i]

1968 All Soviet Union Mathematical Olympiad, 098

Tags: algebra
Prove the equality $$\frac{2}{x^2-1}+\frac{4}{x^2-4} +\frac{6}{x^2-9}+...+\frac{20}{x^2-100} =\frac{11}{(x-1)(x+10)}+\frac{11}{(x-2)(x+9)}+...+\frac{11}{(x-10)(x+1)}$$

1977 Chisinau City MO, 136

Tags: algebra , subset
We represent the number line $R$ as the union of two non-empty sets $A, B$ different from $R$. Prove that one of the sets $A, B$ does not have the following property: the difference of any elements of the set belongs to the same set.

2023 Hong Kong Team Selection Test, Problem 4

Tags: algebra
Let $x$, $y$, $z$ be real numbers such that $x+y+z \ne 0$. Find the minimum value of $\frac{|x|+|x+4y|+|y+7z|+2|z|}{|x+y+z|}$

2014 Dutch IMO TST, 5

Let $P(x)$ be a polynomial of degree $n \le 10$ with integral coefficients such that for every $k \in \{1, 2, \dots, 10\}$ there is an integer $m$ with $P(m) = k$. Furthermore, it is given that $|P(10) - P(0)| < 1000$. Prove that for every integer $k$ there is an integer $m$ such that $P(m) = k.$

2024 All-Russian Olympiad, 2

Tags: symmetry , algebra
Call a triple $(a,b,c)$ of positive numbers [i]mysterious [/i]if \[\sqrt{a^2+\frac{1}{a^2c^2}+2ab}+\sqrt{b^2+\frac{1}{b^2a^2}+2bc}+\sqrt{c^2+\frac{1}{c^2b^2}+2ca}=2(a+b+c).\] Prove that if the triple $(a,b,c)$ is mysterious, then so is the triple $(c,b,a)$. [i]Proposed by A. Kuznetsov, K. Sukhov[/i]

2011 Swedish Mathematical Competition, 3

Find all positive real numbers $x, y, z$, such that $$x - \frac{1}{y^2} = y - \frac{1}{z^2}= z - \frac{1}{x^2}$$

2004 Junior Tuymaada Olympiad, 4

Tags: set , subset , partition , algebra
Given the disjoint finite sets of natural numbers $ A $ and $ B $, consisting of $ n $ and $ m $ elements, respectively. It is known that every natural number belonging to $ A $ or $ B $ satisfies at least one of the conditions $ k + 17 \in A $, $ k-31 \in B $. Prove that $ 17n = 31m $

2016 Singapore MO Open, 2

Let $a, b, c$ be real numbers such that $0 < a, b, c < 1/2$ and $a + b + c= 1$. Prove that for all real numbers $x,y,z$, $$abc(x + y + z)^2 \ge ayz( 1- 2a) + bxz( 1 - 2b) + cxy( 1 - 2c)$$. When does equality hold?

2011 Pre - Vietnam Mathematical Olympiad, 2

Tags: function , algebra
Find all function $f,g: \mathbb{Q} \to \mathbb{Q}$ such that \[\begin{array}{l} f\left( {g\left( x \right) - g\left( y \right)} \right) = f\left( {g\left( x \right)} \right) - y \\ g\left( {f\left( x \right) - f\left( y \right)} \right) = g\left( {f\left( x \right)} \right) - y \\ \end{array}\] for all $x,y \in \mathbb{Q}$.

2015 VJIMC, 3

[b]Problem 3[/b] Let $ P(x) = x^{2015} -2x^{2014}+1$ and $ Q(x) = x^{2015} -2x^{2014}-1$. Determine for each of the polynomials $P$ and $Q$ whether it is a divisor of some nonzero polynomial $c_0 + c_{1}x +\ldots + c_{n}x^n$ n whose coefficients $c_i$ are all in the set $ \{ -1, 1\}$.

1993 Poland - Second Round, 4

Tags: algebra
Let $ (x_n)$ be the sequence of natural number such that: $ x_1\equal{}1$ and $ x_n<x_{n\plus{}1}\leq 2n$ for $ 1\leq n$. Prove that for every natural number $ k$, there exist the subscripts $ r$ and $ s$, such that $ x_r\minus{}x_s\equal{}k$.

2018 Chile National Olympiad, 4

Find all postitive integers n such that $$\left\lfloor \frac{n}{2} \right\rfloor \cdot \left\lfloor \frac{n}{3} \right\rfloor \cdot \left\lfloor \frac{n}{4} \right\rfloor=n^2$$ where $\lfloor x \rfloor$ represents the largest integer less than the real number $x$.

2024 IFYM, Sozopol, 7

The Young Scientist and the Old Scientist play the following game, taking turns in an alternating fashion, with the Young Scientist starting first. The player on turn fills in one of the stars in the equation \[ x^4 + *x^3 + *x^2 + *x + * = 0 \] with a positive real number. Who has a winning strategy if the goals of the players are: a) the Young Scientist - to make the resulting equation have no real roots, and the Old Scientist -- to make it have real roots? b) the Young Scientist - to make the resulting equation have real roots, and the Old Scientist -- to make it have none?

1999 Korea Junior Math Olympiad, 3

Recall that $[x]$ denotes the largest integer not exceeding $x$ for real $x$. For integers $a, b$ in the interval $1 \leq a<b \leq 100$, find the number of ordered pairs $(a, b)$ satisfying the following equation. $$[a+\frac{b}{a}]=[b+\frac{a}{b}]$$