This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2019-IMOC, A5

Find all functions $f : \mathbb N \mapsto \mathbb N$ such that the following identity $$f^{x+1}(y)+f^{y+1}(x)=2f(x+y)$$ holds for all $x,y \in \mathbb N$

2002 National Olympiad First Round, 8

Which of the following polynomials does not divide $x^{60} - 1$? $ \textbf{a)}\ x^2+x+1 \qquad\textbf{b)}\ x^4-1 \qquad\textbf{c)}\ x^5-1 \qquad\textbf{d)}\ x^{15}-1 \qquad\textbf{e)}\ \text{None of above} $

2015 Romania National Olympiad, 2

Let $a, b, c $ be distinct positive integers. a) Prove that $a^2b^2 + a^2c^2 + b^2c^2 \ge 9$. b) if, moreover, $ab + ac + bc +3 = abc > 0,$ show that $$(a -1)(b -1)+(a -1)(c -1)+(b -1)(c -1) \ge 6.$$

2010 ELMO Shortlist, 4

Let $-2 < x_1 < 2$ be a real number and define $x_2, x_3, \ldots$ by $x_{n+1} = x_n^2-2$ for $n \geq 1$. Assume that no $x_n$ is $0$ and define a number $A$, $0 \leq A \leq 1$ in the following way: The $n^{\text{th}}$ digit after the decimal point in the binary representation of $A$ is a $0$ if $x_1x_2\cdots x_n$ is positive and $1$ otherwise. Prove that $A = \frac{1}{\pi}\cos^{-1}\left(\frac{x_1}{2}\right)$. [i]Evan O' Dorney.[/i]

2023 AMC 10, 14

Tags: algebra , integer
How many ordered pairs of integers $(m, n)$ satisfy the equation $m^2+mn+n^2=m^2n^2$? $\textbf{(A) }7\qquad\textbf{(B) }1\qquad\textbf{(C) }3\qquad\textbf{(D) }6\qquad\textbf{(E) }5$

2016 India PRMO, 8

Find the number of integer solutions of $\left[\frac{x}{100} \left[\frac{x}{100}\right]\right]= 5$

2022 German National Olympiad, 1

Determine all real numbers $a$ for which the system of equations \begin{align*} 3x^2+2y^2+2z^2&=a\\ 4x^2+4y^2+5z^2&=1-a \end{align*} has at least one solution $(x,y,z)$ in the real numbers.

1967 IMO Shortlist, 5

A linear binomial $l(z) = Az + B$ with complex coefficients $A$ and $B$ is given. It is known that the maximal value of $|l(z)|$ on the segment $-1 \leq x \leq 1$ $(y = 0)$ of the real line in the complex plane $z = x + iy$ is equal to $M.$ Prove that for every $z$ \[|l(z)| \leq M \rho,\] where $\rho$ is the sum of distances from the point $P=z$ to the points $Q_1: z = 1$ and $Q_3: z = -1.$

2021 Final Mathematical Cup, 3

For every positive integer $n$, $s(n)$ denotes the sum of the digits in the decimal representation of $n$. Prove that for every integer $n \ge 5$, we have $$S(1)S(3)...S(2n-1) \ge S(2)S(4)...S(2n)$$

2010 Iran MO (3rd Round), 4

a) prove that every discrete subgroup of $(\mathbb R^2,+)$ is in one of these forms: i-$\{0\}$. ii-$\{mv|m\in \mathbb Z\}$ for a vector $v$ in $\mathbb R^2$. iii-$\{mv+nw|m,n\in \mathbb Z\}$ for tho linearly independent vectors $v$ and $w$ in $\mathbb R^2$.(lattice $L$) b) prove that every finite group of symmetries that fixes the origin and the lattice $L$ is in one of these forms: $\mathcal C_i$ or $\mathcal D_i$ that $i=1,2,3,4,6$ ($\mathcal C_i$ is the cyclic group of order $i$ and $\mathcal D_i$ is the dyhedral group of order $i$).(20 points)

2020 Costa Rica - Final Round, 4

Consider the function $ h$, defined for all positive real numbers, such that: $$10x -6h(x) = 4h \left(\frac{2020}{x}\right) $$ for all $x > 0$. Find $h(x)$ and the value of $h(4)$.

2010 Junior Balkan Team Selection Tests - Romania, 3

We consider the real numbers $a _ 1, a _ 2, a _ 3, a _ 4, a _ 5$ with the zero sum and the property that $| a _ i - a _ j | \le 1$ , whatever it may be $i,j \in \{1, 2, 3, 4, 5 \} $. Show that $a _ 1 ^ 2 + a _ 2 ^ 2 + a _ 3 ^ 2 + a _ 4 ^ 2 + a _ 5 ^ 2 \le \frac {6} {5}$ .

2012 District Olympiad, 2

Let $ A,B\in\mathcal{M} \left( \mathbb{R} \right) $ that satisfy $ AB=O_3. $ Prove that: [b]a)[/b] The function $ f:\mathbb{C}\longrightarrow\mathbb{C} $ defined as $ f(x)=\det \left( A^2+B^2+xBA \right) $ is a polynomial one, of degree at most $ 2. $ [b]b)[/b] $ \det\left( A^2+B^2 \right)\ge 0. $

1996 Irish Math Olympiad, 3

Tags: function , algebra
A function $ f$ from $ [0,1]$ to $ \mathbb{R}$ has the following properties: $ (i)$ $ f(1)\equal{}1;$ $ (ii)$ $ f(x) \ge 0$ for all $ x \in [0,1]$; $ (iii)$ If $ x,y,x\plus{}y \in [0,1]$, then $ f(x\plus{}y) \ge f(x)\plus{}f(y)$. Prove that $ f(x) \le 2x$ for all $ x \in [0,1]$.

2023 China Team Selection Test, P22

Find all functions $f:\mathbb {Z}\to\mathbb Z$, satisfy that for any integer ${a}$, ${b}$, ${c}$, $$2f(a^2+b^2+c^2)-2f(ab+bc+ca)=f(a-b)^2+f(b-c)^2+f(c-a)^2$$

2023 Israel TST, P3

Find all functions $f:\mathbb{Z}\to \mathbb{Z}_{>0}$ for which \[f(x+f(y))^2+f(y+f(x))^2=f(f(x)+f(y))^2+1\] holds for any $x,y\in \mathbb{Z}$.

2002 Denmark MO - Mohr Contest, 5

Homer Grog has written the numbers $1, 3, 4, 5, 7, 9, 11, 13, 15,17$, one number on each note. He arranges the bills in a circle and tries to get the largest sum $S$ of the numbers of three consecutive bills to be the least possible. What is the smallest value $S$ can assume?

2016 Iran Team Selection Test, 4

Tags: algebra
Suppose that a sequence $a_1,a_2,\ldots$ of positive real numbers satisfies \[a_{k+1}\geq\frac{ka_k}{a_k^2+(k-1)}\] for every positive integer $k$. Prove that $a_1+a_2+\ldots+a_n\geq n$ for every $n\geq2$.

1984 Iran MO (2nd round), 3

Let $f : \mathbb R \to \mathbb R$ be a function such that \[f(x+y)=f(x) \cdot f(y) \qquad \forall x,y \in \mathbb R\] Suppose that $f(0) \neq 0$ and $f(0)$ exists and it is finite $(f(0) \neq \infty)$. Prove that $f$ has derivative in each point $x \in \mathbb R.$

2007 Singapore MO Open, 2

Let $n > 1$ be an integer and let $a_1, a_2,... , a_n$ be $n$ different integers. Show that the polynomial $f(x) = (x -a_1)(x - a_2)\cdot ... \cdot (x -a_n) - 1$ is not divisible by any polynomial with integer coefficients and of degree greater than zero but less than $n$ and such that the highest power of $x$ has coefficient $1$.

2005 Putnam, B1

Find a nonzero polynomial $P(x,y)$ such that $P(\lfloor a\rfloor,\lfloor 2a\rfloor)=0$ for all real numbers $a.$ (Note: $\lfloor v\rfloor$ is the greatest integer less than or equal to $v.$)

2009 India National Olympiad, 2

Tags: function , algebra
Define a a sequence $ {<{a_n}>}^{\infty}_{n\equal{}1}$ as follows $ a_n\equal{}0$, if number of positive divisors of $ n$ is [i]odd[/i] $ a_n\equal{}1$, if number of positive divisors of $ n$ is [i]even[/i] (The positive divisors of $ n$ include $ 1$ as well as $ n$.)Let $ x\equal{}0.a_1a_2a_3........$ be the real number whose decimal expansion contains $ a_n$ in the $ n$-th place,$ n\geq1$.Determine,with proof,whether $ x$ is rational or irrational.

1976 Czech and Slovak Olympiad III A, 4

Determine all solutions of the linear system of equations \begin{align*} &x_1& &-x_2& &-x_3& &-\cdots& &-x_n& &= 2a, \\ -&x_1& &+3x_2& &-x_3& &-\cdots& &-x_n& &= 4a, \\ -&x_1& &-x_2& &+7x_3& &-\cdots& &-x_n& &= 8a, \\ &&&&&&&&&&&\vdots \\ -&x_1& &-x_2& &-x_3& &-\cdots& &+\left(2^n-1\right)x_n& &= 2^na, \end{align*} with unknowns $x_1,\ldots,x_n$ and a real parameter $a.$

2017 South Africa National Olympiad, 1

Tags: algebra , fraction
Together, the two positive integers $a$ and $b$ have $9$ digits and contain each of the digits $1, 2, 3, 4, 5, 6, 7, 8, 9$ exactly once. For which possible values of $a$ and $b$ is the fraction $a/b$ closest to $1$?

1977 Canada National Olympiad, 4

Let \[p(x) = a_n x^n + a_{n - 1} x^{n - 1} + \dots + a_1 x + a_0\] and \[q(x) = b_m x^m + a_{m - 1} x^{m - 1} + \dots + b_1 x + b_0\] be two polynomials with integer coefficients. Suppose that all the coefficients of the product $p(x) \cdot q(x)$ are even but not all of them are divisible by 4. Show that one of $p(x)$ and $q(x)$ has all even coefficients and the other has at least one odd coefficient.