This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2010 Austria Beginners' Competition, 2

Tags: algebra
In a national park there is a group of sequoia trees, all of which have a positive integer age. Their average age is $41$ years. After a $2010$ year old building was destroyed by lightning, the average age drops to $40$ years. How many trees were originally in the group? At most, how many of them were exactly $2010$ years old? (W. Janous, WRG Ursulinen, Innsbruck)

2017 Grand Duchy of Lithuania, 1

The infinite sequence $a_0, a_1, a_2, a_3,... $ is defined by $a_0 = 2$ and $$a_n =\frac{2a_{n-1} + 1}{a_{n-1} + 2}$$ , $n = 1, 2, 3, ...$ Prove that $1 < a_n < 1 + \frac{1}{3^n}$ for all $n = 1, 2, 3, . .$

2013 China Northern MO, 7

Tags: algebra , sequence
Suppose that $\{a_n\}$ is a sequence such that $a_{n+1}=(1+\frac{k}{n})a_{n}+1$ with $a_{1}=1$.Find all positive integers $k$ such that any $a_n$ be integer.

LMT Guts Rounds, 2012

[u]Round 9[/u] [b]p25.[/b] What is the largest integer that cannot be expressed as the sum of nonnegative multiples of $7$, $11$, and $13$? [b]p26.[/b] Evaluate $12{3 \choose3}+ 11{4\choose 3}+ 10{5\choose 3}+ ...+ 2{13\choose 3}+{14 \choose 3}$. [b]p27.[/b] Worker Bob drives to work at $30$ mph half the time and $60$ mph half the time. He returns home along the same route at $30$ mph half the distance and $60$ mph half the distance. What is his average speed along the entire trip, in mph? [u]Round 10[/u] [b]p28.[/b] In quadrilateral $ABCD$, diagonals $\overline{AC}$ and $\overline{BD}$ intersect at $P$ with $BP = 4$, $P D = 6$, $AP = 8$, $P C = 3$, and $AB = 6$. What is the length of $AD$? [b]p29.[/b] Find all positive integers $x$ such that$ x^2 + 17x + 17$ is a square number. [b]p30.[/b] Zach has ten weighted coins that turn up heads with probabilities $\frac{2}{11^2}$ ,$\frac{2}{10^2}$ ,$\frac{2}{9^2}$ $, . . $.,$\frac{2}{2^2}$ . If he flips all ten coins simultaneously, then what is the probability that he will get an even number of heads? [u]Round 11[/u] [b]p31.[/b] Given a sequence $a_1, a_2, . . .$ such that $a_1 = 3$ and $a_{n+1} = a^2_n - 2a_n + 2$ for $n \ge 1$, find the remainder when the product a1a2 · · · a2012 is divided by 100. [b]p32.[/b] Let $ABC$ be an equilateral triangle and let $O$ be its circumcircle. Let $D$ be a point on $\overline{BC}$, and extend $\overline{AD}$ to intersect $O$ at $P$. If $BP = 5$ and $CP = 4$, then what is the value of $DP$? [b]p33.[/b] Surya and Hao take turns playing a game on a calendar. They start with the date January $1$ and they can either increase the month to a later month or increase the day to a later day in that month but not both. The first person to adjust the date to December $31$ is the winner. If Hao goes first, then what is the first date that he must choose to ensure that he does not lose? [u]Round 12[/u] [b]p34.[/b] On May $5$, $1868$, exactly $144$ years before today, Memorial Day in the United States was officially proclaimed. The first Memorial Day took place that year on May $30$ at Waterloo, New York. On May $5$, $2012$, at $12:00$ PM, how many results did the search “memorial day” on Google return? The search phrase is in quotes, so Google will only return sites that have the words memorial and day next to each other in that order. Let $N = max-\{0, \rfloor 15.5 \times \frac{ Your\,\,\, Answer}{Actual \,\,\,Answer} \rfloor \}$. You will earn the number of points equal to $min\{N, max\{0, 30 - N\}\}$. [b]p35.[/b] Estimate the side length of a regular pentagon whose area is $2012$. You will earn the number of points equal to $max\{0, 15 - \lfloor 5 \times |Your \,\,\,Answer - Actual \,\,\,Answer| \rfloor \}$. [b]p36.[/b] Write down one integer between $1$ and $15$, inclusive. (If you do not, then you will receive $0$ points.) Let the number that you submit be $x$. Let $\overline{x}$ be the arithmetic mean of all of the valid numbers submitted by all of the teams. If $x > \overline{x}$, then you will receive $0$ points; otherwise, you will receive $x$ points. PS. You should use hide for answers.Rounds 1-4 are [url=https://artofproblemsolving.com/community/c3h3134177p28401527]here [/url] and 6-8 [url=https://artofproblemsolving.com/community/c3h3134466p28406321]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2013 Romania Team Selection Test, 4

Let $k$ be a positive integer larger than $1$. Build an infinite set $\mathcal{A}$ of subsets of $\mathbb{N}$ having the following properties: [b](a)[/b] any $k$ distinct sets of $\mathcal{A}$ have exactly one common element; [b](b)[/b] any $k+1$ distinct sets of $\mathcal{A}$ have void intersection.

2001 IMO Shortlist, 1

Let $ T$ denote the set of all ordered triples $ (p,q,r)$ of nonnegative integers. Find all functions $ f: T \rightarrow \mathbb{R}$ satisfying \[ f(p,q,r) = \begin{cases} 0 & \text{if} \; pqr = 0, \\ 1 + \frac{1}{6}(f(p + 1,q - 1,r) + f(p - 1,q + 1,r) & \\ + f(p - 1,q,r + 1) + f(p + 1,q,r - 1) & \\ + f(p,q + 1,r - 1) + f(p,q - 1,r + 1)) & \text{otherwise} \end{cases} \] for all nonnegative integers $ p$, $ q$, $ r$.

2002 Austrian-Polish Competition, 10

Tags: induction , algebra
For all real number $x$ consider the family $F(x)$ of all sequences $(a_{n})_{n\geq 0}$ satisfying the equation \[a_{n+1}=x-\frac{1}{a_{n}}\quad (n\geq 0).\] A positive integer $p$ is called a [i]minimal period[/i] of the family $F(x)$ if (a) each sequence $\left(a_{n}\right)\in F(x)$ is periodic with the period $p$, (b) for each $0<q<p$ there exists $\left(a_{n}\right)\in F(x)$ such that $q$ is not a period of $\left(a_{n}\right)$. Prove or disprove that for each positive integer $P$ there exists a real number $x=x(P)$ such that the family $F(x)$ has the minimal period $p>P$.

2018 China Western Mathematical Olympiad, 1

Real numbers $x_1, x_2, \dots, x_{2018}$ satisfy $x_i + x_j \geq (-1)^{i+j}$ for all $1 \leq i < j \leq 2018$. Find the minimum possible value of $\sum_{i=1}^{2018} ix_i$.

2013 China Team Selection Test, 3

Find all positive real numbers $r<1$ such that there exists a set $\mathcal{S}$ with the given properties: i) For any real number $t$, exactly one of $t, t+r$ and $t+1$ belongs to $\mathcal{S}$; ii) For any real number $t$, exactly one of $t, t-r$ and $t-1$ belongs to $\mathcal{S}$.

1998 Argentina National Olympiad, 6

Given $n$ non-negative real numbers, $n\geq 3$, such that the sum of the $n$ numbers is less than or equal to $3$ and the sum of the squares of the $n$ numbers is greater than or equal to $1$, prove that among the $n$ numbers three can be chosen whose sum is greater than or equal to $1$.

1988 Irish Math Olympiad, 2

Tags: algebra
2. Let $x_1, . . . , x_n$ be $n$ integers, and let $p$ be a positive integer, with $p < n$. Put $$S_1 = x_1 + x_2 + . . . + x_p$$ $$T_1 = x_{p+1} + x_{p+2} + . . . + x_n$$ $$S_2 = x_2 + x_3 + . . . + x_{p+1}$$ $$T_2 = x_{p+2} + x_{p+3} + . . . + x_n + x_1$$ $$...$$ $$S_n=x_n+x_1+...+x_{p-1}$$ $$T_n=x_p+x_{p+1}+...+x_{n-1}$$ For $a = 0, 1, 2, 3$, and $b = 0, 1, 2, 3$, let $m(a, b)$ be the number of numbers $i$, $1 \leq i \leq n$, such that $S_i$ leaves remainder $a$ on division by $4$ and $T_i$ leaves remainder $b$ on division by $4$. Show that $m(1, 3)$ and $m(3, 1)$ leave the same remainder when divided by $4$ if, and only if, $m(2, 2)$ is even.

2020 Purple Comet Problems, 15

Tags: algebra
Find the sum of all values of $x$ such that the set $\{107, 122,127, 137, 152,x\}$ has a mean that is equal to its median.

2021 Azerbaijan EGMO TST, 4

Tags: algebra
Let $P(x), Q(x)$ be distinct polynomials of degree $2020$ with non-zero coefficients. Suppose that they have $r$ common real roots counting multiplicity and $s$ common coefficients. Determine the maximum possible value of $r + s$. [i]Demetres Christofides, Cyprus[/i]

2013 BMT Spring, 1

Tags: algebra
Billy the kid likes to play on escalators! Moving at a constant speed, he manages to climb up one escalator in $24$ seconds and climb back down the same escalator in $40$ seconds. If at any given moment the escalator contains $48$ steps, how many steps can Billy climb in one second?

2011 AIME Problems, 15

For some integer $m$, the polynomial $x^3-2011x+m$ has the three integer roots $a$, $b$, and $c$. Find $|a|+|b|+|c|$.

2021 Harvard-MIT Mathematics Tournament., 9

Tags: algebra
Let $f$ be a monic cubic polynomial satisfying $f(x) + f(-x) = 0$ for all real numbers $x$. For all real numbers $y$, define $g(y)$ to be the number of distinct real solutions $x$ to the equation $f(f(x)) = y$. Suppose that the set of possible values of $g(y)$ over all real numbers $y$ is exactly $\{1, 5, 9\}$. Compute the sum of all possible values of $f(10)$.

2014 Albania Round 2, 4

Solve the equation,$$ \sin (\pi \log x) + \cos (\pi \log x) = 1$$

1990 Greece Junior Math Olympiad, 1

Tags: algebra , fibonacci
Considee thr positive integers $a_1,a_2,...,a_{10}$ such that from the third and on, each it the sum of it's two previous terms (i.e. $a_3=a_2+a_1$, $a_4=a_3+a_2$, ...). If $a_5=7$, find $a_{10}$.

2017 Czech-Polish-Slovak Junior Match, 3

Prove that for all real numbers $x, y$ holds $(x^2 + 1)(y^2 + 1) \ge 2(xy - 1)(x + y)$. For which integers $x, y$ does equality occur?

1983 IMO Shortlist, 10

Let $p$ and $q$ be integers. Show that there exists an interval $I$ of length $1/q$ and a polynomial $P$ with integral coefficients such that \[ \left|P(x)-\frac pq \right| < \frac{1}{q^2}\]for all $x \in I.$

2009 ISI B.Math Entrance Exam, 3

Let $1,2,3,4,5,6,7,8,9,11,12,\cdots$ be the sequence of all positive integers which do not contain the digit zero. Write $\{a_n\}$ for this sequence. By comparing with a geometric series, show that $\sum_{k=1}^n \frac{1}{a_k} < 90$.

2024 UMD Math Competition Part I, #23

Tags: algebra
For how many pairs of integers $(m, n)$ with $0 < m \le n \le 50$ do there exist precisely four triples of integers $(x, y, z)$ satisfying the following system? \[\begin{cases} x^2 + y+ z = m \\ x + y^2 + z = n\end{cases}\] \[\rm a. ~180\qquad \mathrm b. ~182\qquad \mathrm c. ~186 \qquad\mathrm d. ~188\qquad\mathrm e. ~190\]

2008 Poland - Second Round, 3

Tags: function , algebra
Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ for which the equality \[f(f(x)\minus{}y)\equal{}f(x)\plus{}f(f(y)\minus{}f(\minus{}x))\plus{}x\] holds for all real $x,y$.

1985 All Soviet Union Mathematical Olympiad, 409

If there are four numbers $(a,b,c,d)$ in four registers of the calculating machine, they turn into $(a-b,b-c,c-d,d-a)$ numbers whenever you press the button. Prove that if not all the initial numbers are equal, machine will obtain at least one number more than $1985$ after some number of the operations.

1970 IMO Shortlist, 11

Tags: algebra , root , polynomial
Let $P,Q,R$ be polynomials and let $S(x) = P(x^3) + xQ(x^3) + x^2R(x^3)$ be a polynomial of degree $n$ whose roots $x_1,\ldots, x_n$ are distinct. Construct with the aid of the polynomials $P,Q,R$ a polynomial $T$ of degree $n$ that has the roots $x_1^3 , x_2^3 , \ldots, x_n^3.$