Found problems: 15925
2018 CMIMC Algebra, 1
Misha has accepted a job in the mines and will produce one ore each day. At the market, he is able to buy or sell one ore for \$3, buy or sell bundles of three wheat for \$12 each, or $\textit{sell}$ one wheat for one ore. His ultimate goal is to build a city, which requires three ore and two wheat. How many dollars must Misha begin with in order to build a city after three days of working?
2019 Danube Mathematical Competition, 1
Solve in $ \mathbb{Z}^2 $ the equation: $ x^2\left( 1+x^2 \right) =-1+21^y. $
[i]Lucian Petrescu[/i]
2007 JBMO Shortlist, 1
Let $a$ be positive real number such that $a^{3}=6(a+1)$. Prove that the equation $x^{2}+ax+a^{2}-6=0$ has no real solution.
2008 Croatia Team Selection Test, 2
For which $ n\in \mathbb{N}$ do there exist rational numbers $ a,b$ which are not integers such that both $ a \plus{} b$ and $ a^n \plus{} b^n$ are integers?
2021 Philippine MO, 7
Let $a, b, c,$ and $d$ be real numbers such that $a \geq b \geq c \geq d$ and
$$a+b+c+d = 13$$
$$a^2+b^2+c^2+d^2=43.$$
Show that $ab \geq 3 + cd$.
1973 Bulgaria National Olympiad, Problem 4
Find all functions $f(x)$ defined in the range $\left(-\frac\pi2,\frac\pi2\right)$ that are differentiable at $0$ and satisfy
$$f(x)=\frac12\left(1+\frac1{\cos x}\right)f\left(\frac x2\right)$$
for every $x$ in the range $\left(-\frac\pi2,\frac\pi2\right)$.
[i]L. Davidov[/i]
2020 HK IMO Preliminary Selection Contest, 2
Let $x$, $y$, $z$ be positive integers satisfying $x<y<z$ and $x+xy+xyz=37$. Find the greatest possible value of $x+y+z$.
2002 Irish Math Olympiad, 4
Let $ \alpha\equal{}2\plus{}\sqrt{3}$. Prove that $ \alpha^n\minus{}[\alpha^n]\equal{}1\minus{}\alpha^{\minus{}n}$ for all $ n \in \mathbb{N}_0$.
2017 IMO Shortlist, A5
An integer $n \geq 3$ is given. We call an $n$-tuple of real numbers $(x_1, x_2, \dots, x_n)$ [i]Shiny[/i] if for each permutation $y_1, y_2, \dots, y_n$ of these numbers, we have
$$\sum \limits_{i=1}^{n-1} y_i y_{i+1} = y_1y_2 + y_2y_3 + y_3y_4 + \cdots + y_{n-1}y_n \geq -1.$$
Find the largest constant $K = K(n)$ such that
$$\sum \limits_{1 \leq i < j \leq n} x_i x_j \geq K$$
holds for every Shiny $n$-tuple $(x_1, x_2, \dots, x_n)$.
2012 NIMO Problems, 6
The polynomial $P(x) = x^3 + \sqrt{6} x^2 - \sqrt{2} x - \sqrt{3}$ has three distinct real roots. Compute the sum of all $0 \le \theta < 360$ such that $P(\tan \theta^\circ) = 0$.
[i]Proposed by Lewis Chen[/i]
2022 EGMO, 4
Given a positive integer $n \ge 2$, determine the largest positive integer $N$ for which there exist $N+1$ real numbers $a_0, a_1, \dots, a_N$ such that
$(1) \ $ $a_0+a_1 = -\frac{1}{n},$ and
$(2) \ $ $(a_k+a_{k-1})(a_k+a_{k+1})=a_{k-1}-a_{k+1}$ for $1 \le k \le N-1$.
2007 Korea National Olympiad, 4
Two real sequence $ \{x_{n}\}$ and $ \{y_{n}\}$ satisfies following recurrence formula;
$ x_{0}\equal{} 1$, $ y_{0}\equal{} 2007$
$ x_{n\plus{}1}\equal{} x_{n}\minus{}(x_{n}y_{n}\plus{}x_{n\plus{}1}y_{n\plus{}1}\minus{}2)(y_{n}\plus{}y_{n\plus{}1})$,
$ y_{n\plus{}1}\equal{} y_{n}\minus{}(x_{n}y_{n}\plus{}x_{n\plus{}1}y_{n\plus{}1}\minus{}2)(x_{n}\plus{}x_{n\plus{}1})$
Then show that for all nonnegative integer $ n$, $ {x_{n}}^{2}\leq 2007$.
IV Soros Olympiad 1997 - 98 (Russia), 10.4
Draw on the plane $(p, q)$ all points with coordinates $(p,q)$, for which the equation $\sin^2x+p\sin x+q=0$ has solutions and all its positive solutions form an arithmetic progression.
2015 Romania Team Selection Tests, 2
Let $(a_n)_{n \geq 0}$ and $(b_n)_{n \geq 0}$ be sequences of real numbers such that $ a_0>\frac{1}{2}$ , $a_{n+1} \geq a_n$ and $b_{n+1}=a_n(b_n+b_{n+2})$ for all non-negative integers $n$ . Show that the sequence $(b_n)_{n \geq 0}$ is bounded .
2022 IMO Shortlist, A8
For a positive integer $n$, an [i]$n$-sequence[/i] is a sequence $(a_0,\ldots,a_n)$ of non-negative integers satisfying the following condition: if $i$ and $j$ are non-negative integers with $i+j \leqslant n$, then $a_i+a_j \leqslant n$ and $a_{a_i+a_j}=a_{i+j}$.
Let $f(n)$ be the number of $n$-sequences. Prove that there exist positive real numbers $c_1$, $c_2$, and $\lambda$ such that \[c_1\lambda^n<f(n)<c_2\lambda^n\] for all positive integers $n$.
1997 All-Russian Olympiad Regional Round, 11.6
Prove that if $1 < a < b < c$, then $$\log_a(\log_a b) + \log_b(\log_b c) + \log_c(\log_c a) > 0.$$
1988 Greece National Olympiad, 1
Let $a>0,b>0,c>0$ and $\sqrt{1987+a}+\sqrt{1987+b}=2\sqrt{1987+c}$. Prove that $\frac{1}{2} (a+b )\ge c $.
2005 IMO Shortlist, 5
Let $x,y,z$ be three positive reals such that $xyz\geq 1$. Prove that
\[ \frac { x^5-x^2 }{x^5+y^2+z^2} + \frac {y^5-y^2}{x^2+y^5+z^2} + \frac {z^5-z^2}{x^2+y^2+z^5} \geq 0 . \]
[i]Hojoo Lee, Korea[/i]
1975 Chisinau City MO, 104
Prove that $x^2+y^2 \ge 2\sqrt2 (x-y)$ if $xy = 1$
2024 Mathematical Talent Reward Programme, 2
Find positive reals $a,b,c$ such that: $$\sqrt{\frac{a}{b+c}} + \sqrt{\frac{b}{c+a}} + \sqrt{\frac{c}{a+b}} = 2$$
2014 Contests, 1
Determine all functions $f:\mathbb{R} \to \mathbb{R}$ such that
\[ xf(y) + f(xf(y)) - xf(f(y)) - f(xy) = 2x + f(y) - f(x+y)\]
holds for all $x,y \in \mathbb{R}$.
ABMC Accuracy Rounds, 2017
[b]p1.[/b] Len's Spanish class has four tests in the first term. Len scores $72$, $81$, and $78$ on the first three tests. If Len wants to have an 80 average for the term, what is the minimum score he needs on the last test?
[b]p2.[/b] In $1824$, the Electoral College had $261$ members. Andrew Jackson won $99$ Electoral College votes and John Quincy Adams won $84$ votes. A plurality occurs when no candidate has more than $50\%$ of the votes. Should a plurality occur, the vote goes to the House of Representatives to break the tie. How many more votes would Jackson have needed so that a plurality would not have occurred?
[b]p3.[/b] $\frac12 + \frac16 + \frac{1}{12} + \frac{1}{20} + \frac{1}{30}= 1 - \frac{1}{n}$. Find $n$.
[b]p4.[/b] How many ways are there to sit Samuel, Esun, Johnny, and Prat in a row of $4$ chairs if Prat and Johnny refuse to sit on an end?
[b]p5.[/b] Find an ordered quadruple $(w, x, y, z)$ that satisfies the following: $$3^w + 3^x + 3^y = 3^z$$ where $w + x + y + z = 2017$.
[b]p6.[/b] In rectangle $ABCD$, $E$ is the midpoint of $CD$. If $AB = 6$ inches and $AE = 6$ inches, what is the length of $AC$?
[b]p7.[/b] Call an integer interesting if the integer is divisible by the sum of its digits. For example, $27$ is divisible by $2 + 7 = 9$, so $27$ is interesting. How many $2$-digit interesting integers are there?
[b]p8.[/b] Let $a\#b = \frac{a^3-b^3}{a-b}$ . If $a, b, c$ are the roots of the polynomial $x^3 + 2x^2 + 3x + 4$, what is the value of $a\#b + b\#c + c\#a$?
[b]p9.[/b] Akshay and Gowri are examining a strange chessboard. Suppose $3$ distinct rooks are placed into the following chessboard. Find the number of ways that one can place these rooks so that they don't attack each other. Note that two rooks are considered attacking each other if they are in the same row or the same column.
[img]https://cdn.artofproblemsolving.com/attachments/f/1/70f7d68c44a7a69eb13ce12291c0600d11027c.png[/img]
[b]p10.[/b] The Earth is a very large sphere. Richard and Allen have a large spherical model of Earth, and they would like to (for some strange reason) cut the sphere up with planar cuts. If each cut intersects the sphere, and Allen holds the sphere together so it does not fall apart after each cut, what is the maximum number of pieces the sphere can be cut into after $6$ cuts?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1962 All Russian Mathematical Olympiad, 015
Given positive numbers $a_1,a_2,...,a_{99},a_{100}$. It is known, that $$a_1>a_0, a_2=3a_1-2a_0, a_3=3a_2-2a_1, ..., a_{100}=3a_{99}-2a_{98}$$ Prove that $$a_{100}>2^{99}.$$
2014 Costa Rica - Final Round, 6
The sequences $a_n$, $b_n$ and $c_n$ are defined recursively in the following way:
$a_0 = 1/6$, $b_0 = 1/2$, $c_0 = 1/3,$
$$a_{n+1}= \frac{(a_n + b_n)(a_n + c_n)}{(a_n - b_n)(a_n - c_n)},\,\,
b_{n+1}= \frac{(b_n + a_n)(b_n + c_n)}{(b_n - a_n)(b_n - c_n)},\,\,
c_{n+1}= \frac{(c_n + a_n)(c_n + b_n)}{(c_n - a_n)(c_n - b_n)}$$
For each natural number $N$, the following polynomials are defined:
$A_n(x) =a_o+a_1 x+ ...+ a_{2N}x^{2N}$
$B_n(x) =b_o+a_1 x+ ...+ a_{2N}x^{2N}$
$C_n(x) =a_o+a_1 x+ ...+ a_{2N}x^{2N}$
Assume the sequences are well defined.
Show that there is no real $c$ such that $A_N(c) = B_N(c) = C_N(c) = 0$.
2005 Turkey Team Selection Test, 1
Find all functions $ f :\mathbb{R}_{0}^{+}\mapsto\mathbb{R}_{0}^{+} $ satisfying the conditions $4f(x)\geq 3x$ and $f(4f(x)-3x)=x$ for all $x\geq 0$ .