Found problems: 15925
1968 IMO Shortlist, 26
Let $f$ be a real-valued function defined for all real numbers, such that for some $a>0$ we have \[ f(x+a)={1\over2}+\sqrt{f(x)-f(x)^2} \] for all $x$.
Prove that $f$ is periodic, and give an example of such a non-constant $f$ for $a=1$.
2025 Malaysian IMO Training Camp, 4
Find all functions $f:\mathbb R\to\mathbb R$ such that \[f(x^2)+2xf(y)=yf(x)+xf(x+y).\]
[i](Proposed by Yeoh Yi Shuen)[/i]
2011 All-Russian Olympiad, 1
Given are two distinct monic cubics $F(x)$ and $G(x)$. All roots of the equations $F(x)=0$, $G(x)=0$ and $F(x)=G(x)$ are written down. There are eight numbers written. Prove that the greatest of them and the least of them cannot be both roots of the polynomial $F(x)$.
2021 Thailand Online MO, P5
Prove that there exists a polynomial $P(x)$ with real coefficients and degree greater than 1 such that both of the following conditions are true
$\cdot$ $P(a)+P(b)+P(c)\ge 2021$ holds for all nonnegative real numbers $a,b,c$ such that $a+b+c=3$
$\cdot$ There are infinitely many triples $(a,b,c)$ of nonnegative real numbers such that $a+b+c=3$ and $P(a)+P(b)+P(c)= 2021$
1982 IMO Longlists, 17
[b](a)[/b] Find the rearrangement $\{a_1, \dots , a_n\}$ of $\{1, 2, \dots, n\}$ that maximizes
\[a_1a_2 + a_2a_3 + \cdots + a_na_1 = Q.\]
[b](b)[/b] Find the rearrangement that minimizes $Q.$
1986 AMC 12/AHSME, 23
Let \[N = 69^{5} + 5\cdot 69^{4} + 10\cdot 69^{3} + 10\cdot 69^{2} + 5\cdot 69 + 1.\] How many positive integers are factors of $N$?
$ \textbf{(A)}\ 3\qquad\textbf{(B)}\ 5\qquad\textbf{(C)}\ 69\qquad\textbf{(D)}\ 125\qquad\textbf{(E)}\ 216 $
2003 National Olympiad First Round, 4
How many pairs of positive integers $(a,b)$ are there such that the roots of polynomial $x^2-ax-b$ are not greater than $5$?
$
\textbf{(A)}\ 40
\qquad\textbf{(B)}\ 50
\qquad\textbf{(C)}\ 65
\qquad\textbf{(D)}\ 75
\qquad\textbf{(E)}\ \text{None of the preceding}
$
2012 BMT Spring, 2
Evaluate $\prod_{k=1}^{254}\log_{k+1}(k + 2)^{u_k}$, where $u_k = \begin{cases}- k & \text{if} \,\, k \,\, \text{is odd}\\
\frac{1}{k-1} & \text{if} \,\, k \,\, \text{is even} \end{cases}$
2025 Ukraine National Mathematical Olympiad, 8.1
There are \(n\) numbers arranged in a circle, and each number equals the absolute value of the difference between its two neighbors. Is it necessarily true that all numbers are equal to zero if:
a) \(n=2025\);
b) \(n=2024\)?
[i]Proposed by Anton Trygub[/i]
2021 South Africa National Olympiad, 5
Determine all polynomials $a(x)$, $b(x)$, $c(x)$, $d(x)$ with real coefficients satisfying the simultaneous equations
\begin{align*}
b(x) c(x) + a(x) d(x) & = 0 \\
a(x) c(x) + (1 - x^2) b(x) d(x) & = x + 1.
\end{align*}
2019 China Team Selection Test, 1
Given complex numbers $x,y,z$, with $|x|^2+|y|^2+|z|^2=1$. Prove that: $$|x^3+y^3+z^3-3xyz| \le 1$$
2024 Philippine Math Olympiad, P1
Let $f:\mathbb{Z}^2\rightarrow\mathbb{Z}$ be a function satisfying
\[f(x+1,y)+f(x,y+1)+1=f(x,y)+f(x+1,y+1)\]
for all integers $x$ and $y$. Can it happen that $|f(x,y)|\leq 2024$ for all $x,y\in\mathbb{Z}$?
2017 India PRMO, 23
Suppose an integer $x$, a natural number $n$ and a prime number $p$ satisfy the equation $7x^2-44x+12=p^n$. Find the largest value of $p$.
2008 Tournament Of Towns, 2
Solve the system of equations $(n > 2)$
\[\begin{array}{c}\ \sqrt{x_1}+\sqrt{x_2+x_3+\cdots+x_n}=\sqrt{x_2}+\sqrt{x_3+x_4+\cdots+x_n+x_1}=\cdots=\sqrt{x_n}+\sqrt{x_1+x_2+\cdots+x_{n-1}} \end{array}, \] \[x_1-x_2=1.\]
1987 Polish MO Finals, 3
$w(x)$ is a polynomial with integer coefficients. Let $p_n$ be the sum of the digits of the number $w(n)$. Show that some value must occur infinitely often in the sequence $p_1, p_2, p_3, ...$ .
2025 Malaysian IMO Training Camp, 2
Determine all infinite sequences of nonnegative integers $a_1,a_2,\ldots$ such that:
1. Every positive integer appears in the sequence at least once, and;
2. $a_i$ is the smallest integer $j$ such that $a_{j+2}=i$, for all $i\ge 1$.
[i](Proposed by Ho Janson)[/i]
2024 All-Russian Olympiad Regional Round, 11.7
Graph $G_1$ of a quadratic trinomial $y = px^2 + qx + r$ with real coefficients intersects the graph $G_2$ of a quadratic trinomial $y = x^2$ in points $A$, $B$. The intersection of tangents to $G_2$ in points $A$, $B$ is point $C$. If $C \in G_1$, find all possible values of $p$.
MBMT Guts Rounds, 2022
[hide=D stands for Dedekind, Z stands for Zermelo]they had two problem sets under those two names[/hide]
[u]Set 4[/u]
[b]D16.[/b] The cooking club at Blair creates $14$ croissants and $21$ danishes. Daniel chooses pastries randomly, stopping when he gets at least one croissant and at least two danishes. How many pastries must he choose to guarantee that he has one croissant and two danishes?
[b]D17.[/b] Each digit in a $3$ digit integer is either $1, 2$, or $4$ with equal probability. What is the probability that the hundreds digit is greater than the sum of the tens digit and the ones digit?
[b]D18 / Z11.[/b] How many two digit numbers are there such that the product of their digits is prime?
[b]D19 / Z9.[/b] In the coordinate plane, a point is selected in the rectangle defined by $-6 \le x \le 4$ and $-2 \le y \le 8$. What is the largest possible distance between the point and the origin, $(0, 0)$?
[b]D20 / Z10.[/b] The sum of two numbers is $6$ and the sum of their squares is $32$. Find the product of the two numbers.
[u]Set 5[/u]
[b]D21 / Z12.[/b] Triangle $ABC$ has area $4$ and $\overline{AB} = 4$. What is the maximum possible value of $\angle ACB$?
[b]D22 / Z13.[/b] Let $ABCD$ be an iscoceles trapezoid with $AB = CD$ and M be the midpoint of $AD$. If $\vartriangle ABM$ and $\vartriangle MCD$ are equilateral, and $BC = 4$, find the area of trapezoid $ABCD$.
[b]D23 / Z14.[/b] Let $x$ and $y$ be positive real numbers that satisfy $(x^2 + y^2)^2 = y^2$. Find the maximum possible value of $x$.
[b]D24 / Z17.[/b] In parallelogram $ABCD$, $\angle A \cdot \angle C - \angle B \cdot \angle D = 720^o$ where all angles are in degrees. Find the value of $\angle C$.
[b]D25.[/b] The number $12ab9876543$ is divisible by $101$, where $a, b$ represent digits between $0$ and $9$. What is $10a + b$?
[u]Set 6[/u]
[b]D26 / Z26.[/b] For every person who wrote a problem that appeared on the final MBMT tests, take the number of problems they wrote, and then take that number’s factorial, and finally multiply all these together to get $n$. Estimate the greatest integer $a$ such that $2^a$ evenly divides $n$.
[b]D27 / Z27.[/b] Circles of radius $5$ are centered at each corner of a square with side length $6$. If a random point $P$ is chosen randomly inside the square, what is the probability that $P$ lies within all four circles?
[b]D28 / Z28.[/b] Mr. Rose’s evil cousin, Mr. Caulem, has teaches a class of three hundred bees. Every week, he tries to disrupt Mr. Rose’s $4$th period by sending three of his bee students to fly around and make human students panic. Unfortunately, no pair of bees can fly together twice, as then Mr. Rose will become suspicious and trace them back to Mr. Caulem. What’s the largest number of weeks Mr. Caulem can disrupt Mr. Rose’s class?
[b]D29 / Z29. [/b]Two blind brothers Beard and Bored are driving their tractors in the middle of a field facing north, and both are $10$ meters west from a roast turkey. Beard, can turn exactly $0.7^o$ and Bored can turn exactly $0.2^o$ degrees. Driving at a consistent $2$ meters per second, they drive straight until they notice the smell of the turkey getting farther away, and then turn right and repeat until they get to the turkey.
Suppose Beard gets to the Turkey in about $818.5$ seconds. Estimate the amount of time it will take Bored.
[b]D30 / Z30.[/b] Let a be the probability that $4$ randomly chosen positive integers have no common divisor except for $1$. Estimate $300a$. Note that the integers $1, 2, 3, 4$ have no common divisor except for $1$.
Remark. This problem is asking you to find $300 \lim_{n\to \infty} a_n$, if $a_n$ is defined to be the probability that $4$ randomly chosen integers from $\{1, 2, ..., n\}$ have greatest common divisor $1$.
PS. You should use hide for answers. D.1-15 / Z.1-8 problems have been collected [url=https://artofproblemsolving.com/community/c3h2916240p26045561]here [/url]and Z.15-25 [url=https://artofproblemsolving.com/community/c3h2916258p26045774]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
1982 IMO Longlists, 14
Determine all real values of the parameter $a$ for which the equation
\[16x^4 -ax^3 + (2a + 17)x^2 -ax + 16 = 0\]
has exactly four distinct real roots that form a geometric progression.
1994 Tournament Of Towns, (431) 1
Several boys and girls are dancing a waltz at a ball. Is it possible that each girl can always get to dance the next dance with either a more handsome or more clever boy than for the previous dance, and that each time at least $80\%$ of the girls get to dance the next dance with a boy who is more handsome and more clever? (The numbers of boys and girls are equal and all are dancing.)
(AY Belov)
2011 AMC 12/AHSME, 19
At a competition with $N$ players, the number of players given elite status is equal to \[2^{1+\lfloor\log_2{(N-1)}\rfloor} - N. \] Suppose that $19$ players are given elite status. What is the sum of the two smallest possible values of $N$?
$ \textbf{(A)}\ 38\qquad
\textbf{(B)}\ 90 \qquad
\textbf{(C)}\ 154 \qquad
\textbf{(D)}\ 406 \qquad
\textbf{(E)}\ 1024$
2019 Dutch BxMO TST, 3
Let $x$ and $y$ be positive real numbers.
1. Prove: if $x^3 - y^3 \ge 4x$, then $x^2 > 2y$.
2. Prove: if $x^5 - y^3 \ge 2x$, then $x^3 \ge 2y$.
EMCC Guts Rounds, 2014
[u]Round 1[/u]
[b]p1.[/b] What is $2 + 22 + 1 + 3 - 31 - 3$?
[b]p2.[/b] Let $ABCD$ be a rhombus. Given $AB = 5$, $AC = 8$, and $BD = 6$, what is the perimeter of the rhombus?
[b]p3.[/b] There are $2$ hats on a table. The first hat has $3$ red marbles and 1 blue marble. The second hat has $2$ red marbles and $4$ blue marbles. Jordan picks one of the hats randomly, and then randomly chooses a marble from that hat. What is the probability that she chooses a blue marble?
[u]Round 2[/u]
[b]p4.[/b] There are twelve students seated around a circular table. Each of them has a slip of paper that they may choose to pass to either their clockwise or counterclockwise neighbor. After each person has transferred their slip of paper once, the teacher observes that no two students exchanged papers. In how many ways could the students have transferred their slips of paper?
[b]p5.[/b] Chad wants to test David's mathematical ability by having him perform a series of arithmetic operations at lightning-speed. He starts with the number of cubic centimeters of silicon in his 3D printer, which is $109$. He has David perform all of the following operations in series each second:
$\bullet$ Double the number
$\bullet$ Subtract $4$ from the number
$\bullet$ Divide the number by $4$
$\bullet$ Subtract $5$ from the number
$\bullet$ Double the number
$\bullet$ Subtract $4$ from the number
Chad instructs David to shout out after three seconds the result of three rounds of calculations. However, David computes too slowly and fails to give an answer in three seconds. What number should David have said to Chad?
[b]p6.[/b] Points $D, E$, and $F$ lie on sides $BC$, $CA$, and $AB$ of triangle $ABC$, respectively, such that the following length conditions are true: $CD = AE = BF = 2$ and $BD = CE = AF = 4$. What is the area of triangle $ABC$?
[u]Round 3[/u]
[b]p7.[/b] In the $2, 3, 5, 7$ game, players count the positive integers, starting with $1$ and increasing, which do not contain the digits $2, 3, 5$, and $7$, and also are not divisible by the numbers $2, 3, 5$, and $7$. What is the fifth number counted?
[b]p8.[/b] If A is a real number for which $19 \cdot A = \frac{2014!}{1! \cdot 2! \cdot 2013!}$ , what is $A$?
Note: The expression $k!$ denotes the product $k \cdot (k - 1) \cdot ...\cdot 2 \cdot 1$.
[b]p9.[/b] What is the smallest number that can be written as both $x^3 + y^2$ and $z^3 + w^2$ for positive integers $x, y, z,$ and $w$ with $x \ne z$?
[u]Round 4[/u]
[i]Each of the three problems in this round depends on the answer to one of the other problems. There is only one set of correct answers to these problems; however, each problem will be scored independently, regardless of whether the answers to the other problems are correct. In addition, it is given that the answer to each of the following problems is a positive integer less than or equal to the problem number.
[/i]
[b]p10.[/b] Let $B$ be the answer to problem $11$ and let $C$ be the answer to problem $12$. What is the sum of a side length of a square with perimeter $B$ and a side length of a square with area $C$?
[b]p11.[/b] Let $A$ be the answer to problem $10$ and let $C$ be the answer to problem $12$. What is $(C - 1)(A + 1) - (C + 1)(A - 1)$?
[b]p12.[/b] Let $A$ be the answer to problem $10$ and let $B$ be the answer to problem $11$. Let $x$ denote the positive difference between $A$ and $B$. What is the sum of the digits of the positive integer $9x$?
PS. You should use hide for answers. Rounds 5-8 have been posted [url=https://artofproblemsolving.com/community/c3h2915810p26040675]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2005 Putnam, B5
Let $P(x_1,\dots,x_n)$ denote a polynomial with real coefficients in the variables $x_1,\dots,x_n,$ and suppose that
(a) $\left(\frac{\partial^2}{\partial x_1^2}+\cdots+\frac{\partial^2}{\partial x_n^2} \right)P(x_1,\dots,x_n)=0$ (identically)
and that
(b) $x_1^2+\cdots+x_n^2$ divides $P(x_1,\dots,x_n).$
Show that $P=0$ identically.
1985 Traian Lălescu, 2.2
Show that if $ \left| ax^2+bx+c\right|\le 1, $ for all $ x\in [-1,1], $ then $ |a|+|b|+|c|\le 4. $