This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

Math Hour Olympiad, Grades 8-10, 2012

[u]Round 1 [/u] [b]p1.[/b] In the Hundred Acre Wood, all the animals are either knights or liars. Knights always tell the truth and liars always lie. One day in the Wood, Winnie-the-Pooh, a knight, decides to visit his friend Rabbit, also a noble knight. Upon arrival, Pooh finds his friend sitting at a round table with $5$ other guests. One-by-one, Pooh asks each person at the table how many of his two neighbors are knights. Surprisingly, he gets the same answer from everybody! "Oh bother!" proclaims Pooh. "I still don't have enough information to figure out how many knights are at this table." "But it's my birthday," adds one of the guests. "Yes, it's his birthday!" agrees his neighbor. Now Pooh can tell how many knights are at the table. Can you? [b]p2.[/b] Harry has an $8 \times 8$ board filled with the numbers $1$ and $-1$, and the sum of all $64$ numbers is $0$. A magical cut of this board is a way of cutting it into two pieces so that the sum of the numbers in each piece is also $0$. The pieces should not have any holes. Prove that Harry will always be able to find a magical cut of his board. (The picture shows an example of a proper cut.) [img]https://cdn.artofproblemsolving.com/attachments/4/b/98dec239cfc757e6f2996eef7876cbfd79d202.png[/img] [b]p3.[/b] Several girls participate in a tennis tournament in which each player plays each other player exactly once. At the end of the tournament, it turns out that each player has lost at least one of her games. Prove that it is possible to find three players $A$, $B$, and $C$ such that $A$ defeated $B$, $B$ defeated $C$, and $C$ defeated $A$. [b]p4.[/b] $120$ bands are participating in this year's Northwest Grunge Rock Festival, and they have $119$ fans in total. Each fan belongs to exactly one fan club. A fan club is called crowded if it has at least $15$ members. Every morning, all the members of one of the crowded fan clubs start arguing over who loves their favorite band the most. As a result of the fighting, each of them leaves the club to join another club, but no two of them join the same one. Is it true that, no matter how the clubs are originally arranged, all these arguments will eventually stop? [b]p5.[/b] In Infinite City, the streets form a grid of squares extending infinitely in all directions. Bonnie and Clyde have just robbed the Infinite City Bank, located at the busiest intersection downtown. Bonnie sets off heading north on her bike, and, $30$ seconds later, Clyde bikes after her in the same direction. They each bike at a constant speed of $1$ block per minute. In order to throw off any authorities, each of them must turn either left or right at every intersection. If they continue biking in this manner, will they ever be able to meet? [u]Round 2 [/u] [b]p6.[/b] In a certain herd of $33$ cows, each cow weighs a whole number of pounds. Farmer Dan notices that if he removes any one of the cows from the herd, it is possible to split the remaining $32$ cows into two groups of equal total weight, $16$ cows in each group. Show that all $33$ cows must have the same weight. [b]p7.[/b] Katniss is thinking of a positive integer less than $100$: call it $x$. Peeta is allowed to pick any two positive integers $N$ and $M$, both less than $100$, and Katniss will give him the greatest common divisor of $x+M$ and $N$ . Peeta can do this up to seven times, after which he must name Katniss' number $x$, or he will die. Can Peeta ensure his survival? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Mid-Michigan MO, Grades 10-12, 2015

[b]p1.[/b] What is the maximal number of pieces of two shapes, [img]https://cdn.artofproblemsolving.com/attachments/a/5/6c567cf6a04b0aa9e998dbae3803b6eeb24a35.png[/img] and [img]https://cdn.artofproblemsolving.com/attachments/8/a/7a7754d0f2517c93c5bb931fb7b5ae8f5e3217.png[/img], that can be used to tile a $7\times 7$ square? [b]p2.[/b] Six shooters participate in a shooting competition. Every participant has $5$ shots. Each shot adds from $1$ to $10$ points to shooter’s score. Every person can score totally for all five shots from $5$ to $50$ points. Each participant gets $7$ points for at least one of his shots. The scores of all participants are different. We enumerate the shooters $1$ to $6$ according to their scores, the person with maximal score obtains number $1$, the next one obtains number $2$, the person with minimal score obtains number $6$. What score does obtain the participant number $3$? The total number of all obtained points is $264$. [b]p2.[/b] There are exactly $n$ students in a high school. Girls send messages to boys. The first girl sent messages to $5$ boys, the second to $7$ boys, the third to $6$ boys, the fourth to $8$ boys, the fifth to $7$ boys, the sixth to $9$ boys, the seventh to $8$, etc. The last girl sent messages to all the boys. Prove that $n$ is divisible by $3$. [b]p4.[/b] In what minimal number of triangles can one cut a $25 \times 12$ rectangle in such a way that one can tile by these triangles a $20 \times 15$ rectangle. [b]p5.[/b] There are $2014$ stones in a pile. Two players play the following game. First, player $A$ takes some number of stones (from $1$ to $30$) from the pile, then player B takes $1$ or $2$ stones, then player $A$ takes $2$ or $3$ stones, then player $B$ takes $3$ or $4$ stones, then player A takes $4$ or $5$ stones, etc. The player who gets the last stone is the winner. If no player gets the last stone (there is at least one stone in the pile but the next move is not allowed) then the game results in a draw. Who wins the game using the right strategy? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

I Soros Olympiad 1994-95 (Rus + Ukr), 11.5

Function $f(x)$. which is defined on the set of non-negative real numbers, acquires real values. It is known that $f(0)\le 0$ and the function $f(x)/x$ is increasing for $x>0$. Prove that for arbitrary $x\ge 0$ and $y\ge 0$, holds the inequality $f(x+y)\ge f(x)+ f(y)$ .

Kvant 2021, M2661

An infinite table whose rows and columns are numbered with positive integers, is given. For a sequence of functions $f_1(x), f_2(x), \ldots $ let us place the number $f_i(j)$ into the cell $(i,j)$ of the table (for all $i, j\in \mathbb{N}$). A sequence $f_1(x), f_2(x), \ldots $ is said to be {\it nice}, if all the numbers in the table are positive integers, and each positive integer appears exactly once. Determine if there exists a nice sequence of functions $f_1(x), f_2(x), \ldots $, such that each $f_i(x)$ is a polynomial of degree 101 with integer coefficients and its leading coefficient equals to 1.

V Soros Olympiad 1998 - 99 (Russia), 9.3

Solve the system of equations: $$\frac{x-1}{xy-3}=\frac{y-2}{xy-4}=\frac{3-x-y}{7-x^2-y^2}$$

1999 Belarusian National Olympiad, 3

Tags: sequence , algebra
A sequence of numbers $a_1,a_2,...,a_{1999}$ is given. In each move it is allowed to choose two of the numbers, say $a_m,a_n$, and replace them by the numbers $$\frac{a_n^2}{a_m^2}-\frac{n}{m}\left(\frac{a_m^2}{a_n}-a_m\right), \frac{a_m^2}{a_n^2}-\frac{m}{n}\left(\frac{a_n^2}{a_m}-a_n\right) $$ respectively. Starting with the sequence $a_i = 1$ for $20 \nmid i$ and $a_i =\frac{1}{5}$ for $20 \mid i$, is it possible to obtain a sequence whose all terms are integers?

2019 VJIMC, 1

Let $\{a_n \}_{n=0}^{\infty}$ be a sequence given recrusively such that $a_0=1$ and $$a_{n+1}=\frac{7a_n+\sqrt{45a_n^2-36}}{2}$$ for $n\geq 0$ Show that : a) $a_n$ is a positive integer. b) $a_n a_{n+1}-1$ is a square of an integer. [i]Proposed by Stefan Gyurki (Matej Bel University, Banska Bystrica).[/i]

2024 Thailand TSTST, 12

We call polynomial $S(x)\in\mathbb{R}[x]$ sadeh whenever it's divisible by $x$ but not divisible by $x^2$. For the polynomial $P(x)\in\mathbb{R}[x]$ we know that there exists a sadeh polynomial $Q(x)$ such that $P(Q(x))-Q(2x)$ is divisible by $x^2$. Prove that there exists sadeh polynomial $R(x)$ such that $P(R(x))-R(2x)$ is divisible by $x^{1401}$.

2005 All-Russian Olympiad Regional Round, 11.2

Tags: algebra
It is known that there is a number $S$ such that if $ a+b+c+d = S$ and $\frac{1}{a}+ \frac{1}{b}+ \frac{1}{c}+ \frac{1}{d} = S$ $(a, b, c, d$ are different from zero and one$)$, then $\frac{1}{a- 1} ++ \frac{1}{b- 1} + \frac{1}{c- 1} + \frac{1}{d -1} = S.$ Find $S$.

2017 Costa Rica - Final Round, A1

Let $P (x)$ be a polynomial of degree $2n$, such that $P (k) =\frac{k}{k + 1}$ for $k = 0,...,2n$. Determine $P (2n + 1)$.

2018 China Team Selection Test, 5

Suppose the real number $\lambda \in \left( 0,1\right),$ and let $n$ be a positive integer. Prove that the modulus of all the roots of the polynomial $$f\left ( x \right )=\sum_{k=0}^{n}\binom{n}{k}\lambda^{k\left ( n-k \right )}x^{k}$$ are $1.$

2021 CMIMC, 1.6

Find the remainder when $$\left \lfloor \frac{149^{151} + 151^{149}}{22499}\right \rfloor$$ is divided by $10^4$. [i]Proposed by Vijay Srinivasan[/i]

1990 Chile National Olympiad, 5

Tags: sum , algebra
Determine a natural $n$ such that $$996 \le \sum_{k = 1}^{n}\frac{1}{k}$$

1957 Moscow Mathematical Olympiad, 348

A snail crawls over a table at a constant speed. Every $15$ minutes it turns by $90^o$, and in between these turns it crawls along a straight line. Prove that it can return to the starting point only in an integer number of hours.

2016 CMIMC, 1

Tags: function , algebra
Let \[f(x)=\dfrac{1}{1-\dfrac{1}{1-x}}\,.\] Compute $f^{2016}(2016)$, where $f$ is composed upon itself $2016$ times.

2015 Postal Coaching, Problem 2

Find all pairs of cubic equations $x^3+ax^2+bx+c=0$ and $x^3+bx^2+ax+c=0$ where $a, b$ are positive integers, $c\neq 0$ is an integer, such that each equation has three integer roots and exactly one of these three roots is common to both the equations.

2003 China Western Mathematical Olympiad, 1

The sequence $ \{a_n\}$ satisfies $ a_0 \equal{} 0, a_{n \plus{} 1} \equal{} ka_n \plus{} \sqrt {(k^2 \minus{} 1)a_n^2 \plus{} 1}, n \equal{} 0, 1, 2, \ldots$, where $ k$ is a fixed positive integer. Prove that all the terms of the sequence are integral and that $ 2k$ divides $ a_{2n}, n \equal{} 0, 1, 2, \ldots$.

2013 Kosovo National Mathematical Olympiad, 2

Find all integer $n$ such that $n-5$ divide $n^2+n-27$.

1974 IMO Shortlist, 8

The variables $a,b,c,d,$ traverse, independently from each other, the set of positive real values. What are the values which the expression \[ S= \frac{a}{a+b+d} + \frac{b}{a+b+c} + \frac{c}{b+c+d} + \frac{d}{a+c+d} \] takes?

2024 Indonesia TST, 1

Tags: algebra
Professor Oak is feeding his $100$ Pokémon. Each Pokémon has a bowl whose capacity is a positive real number of kilograms. These capacities are known to Professor Oak. The total capacity of all the bowls is $100$ kilograms. Professor Oak distributes $100$ kilograms of food in such a way that each Pokémon receives a non-negative integer number of kilograms of food (which may be larger than the capacity of the bowl). The [i]dissatisfaction level[/i] of a Pokémon who received $N$ kilograms of food and whose bowl has a capacity of $C$ kilograms is equal to $\lvert N-C\rvert$. Find the smallest real number $D$ such that, regardless of the capacities of the bowls, Professor Oak can distribute food in a way that the sum of the dissatisfaction levels over all the $100$ Pokémon is at most $D$. [i]Oleksii Masalitin, Ukraine[/i]

2008 Cuba MO, 4

Determine all functions $f : R \to R$ such that $f(xy + f(x)) =xf(y) + f(x)$ for all real numbers $x, y$.

1991 IMO Shortlist, 21

Let $ f(x)$ be a monic polynomial of degree $ 1991$ with integer coefficients. Define $ g(x) \equal{} f^2(x) \minus{} 9.$ Show that the number of distinct integer solutions of $ g(x) \equal{} 0$ cannot exceed $ 1995.$

2020 SAFEST Olympiad, 5

Tags: algebra
Let $n\geqslant 2$ be a positive integer and $a_1,a_2, \ldots ,a_n$ be real numbers such that \[a_1+a_2+\dots+a_n=0.\] Define the set $A$ by \[A=\left\{(i, j)\,|\,1 \leqslant i<j \leqslant n,\left|a_{i}-a_{j}\right| \geqslant 1\right\}\] Prove that, if $A$ is not empty, then \[\sum_{(i, j) \in A} a_{i} a_{j}<0.\]

1992 French Mathematical Olympiad, Problem 4

Given $u_0,u_1$ with $0<u_0,u_1<1$, define the sequence $(u_n)$ recurrently by the formula $$u_{n+2}=\frac12\left(\sqrt{u_{n+1}}+\sqrt{u_n}\right).$$(a) Prove that the sequence $u_n$ is convergent and find its limit. (b) Prove that, starting from some index $n_0$, the sequence $u_n$ is monotonous.

2017 Taiwan TST Round 3, 2

Prove that there exists a polynomial with integer coefficients satisfying the following conditions: (a)$f(x)=0$ has no rational root. (b) For any positive integer $n$, there always exists an integer $m$ such that $n\mid f(m)$.