Found problems: 15925
2005 Hong kong National Olympiad, 4
Let $a,b,c,d$ be positive real numbers such that $a+b+c+d=1$. Prove that\[ 6(a^3+b^3+c^3+d^3)\ge(a^2+b^2+c^2+d^2)+\frac{1}{8} \]
2024 Australian Mathematical Olympiad, P3
Let $a_1, a_2, \ldots, a_n$ be positive reals for $n \geq 2$. For a permutation $(b_1, b_2, \ldots, b_n)$ of $(a_1, a_2, \ldots, a_n)$, define its $\textit{score}$ to be $$\sum_{i=1}^{n-1}\frac{b_i^2}{b_{i+1}}.$$ Show that some two permutations of $(a_1, a_2, \ldots, a_n)$ have scores that differ by at most $3|a_1-a_n|$.
2021 Princeton University Math Competition, A4 / B6
The roots of a monic cubic polynomial $p$ are positive real numbers forming a geometric sequence. Suppose that the sum of the roots is equal to $10$. Under these conditions, the largest possible value of $|p(-1)|$ can be written as $\frac{m}{n}$, where $m$, $n$ are relatively prime integers. Find $m + n$.
1949-56 Chisinau City MO, 49
Prove the identity: $$\cos \frac{\pi}{7} \cdot \cos \frac{4\pi}{7} \cdot \cos \frac{5\pi}{7} = \frac{1}{8}$$
2018 IFYM, Sozopol, 3
The number 1 is a solution of the equation
$(x + a)(x + b)(x + c)(x + d) = 16$,
where $a, b, c, d$ are positive real numbers. Find the largest value of $abcd$.
2001 China Team Selection Test, 3
Given $a$, $b$ are positive integers greater than $1$, and for every positive integer $n$, $b^{n}-1$ divides $a^{n}-1$. Define the polynomial $p_{n}(x)$ as follows: $p_0{x}=-1$, $p_{n+1}(x)=b^{n+1}(x-1)p_{n}(bx)-a(b^{n+1}-1)p_{n}(x)$, for $n \ge 0$. Prove that there exist integers $C$ and positive integer $k$ such that $p_{k}(x)=Cx^k$.
2014 Bosnia and Herzegovina Junior BMO TST, 3
Let $a$, $b$ and $c$ be positive real numbers such that $a+b+c=1$. Prove the inequality:
$\frac{1}{\sqrt{(a+2b)(b+2a)}}+\frac{1}{\sqrt{(b+2c)(c+2b)}}+\frac{1}{\sqrt{(c+2a)(a+2c)}} \geq 3$
2014 BMT Spring, 11
Suppose that $x^{10} + x + 1 = 0$ and $x^100 = a_0 + a_1x +... + a_9x^9$. Find $a_5$.
1987 Bundeswettbewerb Mathematik, 4
Let $1<k\leq n$ be positive integers and $x_1 , x_2 , \ldots , x_k$ be positive real numbers such that $x_1 \cdot x_2 \cdot \ldots \cdot x_k = x_1 + x_2 + \ldots +x_k.$
a) Show that $x_{1}^{n-1} +x_{2}^{n-1} + \ldots +x_{k}^{n-1} \geq kn.$
b) Find all numbers $k,n$ and $x_1, x_2 ,\ldots , x_k$ for which equality holds.
1992 Dutch Mathematical Olympiad, 5
We consider regular $ n$-gons with a fixed circumference $ 4$. Let $ r_n$ and $ a_n$ respectively be the distances from the center of such an $ n$-gon to a vertex and to an edge.
$ (a)$ Determine $ a_4,r_4,a_8,r_8$.
$ (b)$ Give an appropriate interpretation for $ a_2$ and $ r_2$
$ (c)$ Prove that $ a_{2n}\equal{}\frac{1}{2} (a_n\plus{}r_n)$ and $ r_{2n}\equal{}\sqrt{a_2n r_n}.$
$ (d)$ Define $ u_0\equal{}0, u_1\equal{}1$ and $ u_n\equal{}\frac{1}{2}(u_{n\minus{}2}\plus{}u_{n\minus{}1})$ for $ n$ even or $ u_n\equal{}\sqrt{u_{n\minus{}2} u_{n\minus{}1}}$ for $ n$ odd. Determine $ \displaystyle\lim_{n\to\infty}u_n$.
MOAA Gunga Bowls, 2020
[u]Set 1[/u]
[b]B1.[/b] Evaluate $2 + 0 - 2 \times 0$.
[b]B2.[/b] It takes four painters four hours to paint four houses. How many hours does it take forty painters to paint forty houses?
[b]B3.[/b] Let $a$ be the answer to this question. What is $\frac{1}{2-a}$?
[u]Set 2[/u]
[b]B4.[/b] Every day at Andover is either sunny or rainy. If today is sunny, there is a $60\%$ chance that tomorrow is sunny and a $40\%$ chance that tomorrow is rainy. On the other hand, if today is rainy, there is a $60\%$ chance that tomorrow is rainy and a $40\%$ chance that tomorrow is sunny. Given that today is sunny, the probability that the day after tomorrow is sunny can be expressed as n%, where n is a positive integer. What is $n$?
[b]B5.[/b] In the diagram below, what is the value of $\angle DD'Y$ in degrees?
[img]https://cdn.artofproblemsolving.com/attachments/0/8/6c966b13c840fa1885948d0e4ad598f36bee9d.png[/img]
[b]B6.[/b] Christina, Jeremy, Will, and Nathan are standing in a line. In how many ways can they be arranged such that Christina is to the left of Will and Jeremy is to the left of Nathan?
Note: Christina does not have to be next to Will and Jeremy does not have to be next to Nathan. For example, arranging them as Christina, Jeremy, Will, Nathan would be valid.
[u]Set 3[/u]
[b]B7.[/b] Let $P$ be a point on side $AB$ of square $ABCD$ with side length $8$ such that $PA = 3$. Let $Q$ be a point on side $AD$ such that $P Q \perp P C$. The area of quadrilateral $PQDB$ can be expressed in the form $m/n$ for relatively prime positive integers $m$ and $n$. Compute $m + n$.
[b]B8.[/b] Jessica and Jeffrey each pick a number uniformly at random from the set $\{1, 2, 3, 4, 5\}$ (they could pick the same number). If Jessica’s number is $x$ and Jeffrey’s number is $y$, the probability that $x^y$ has a units digit of $1$ can be expressed as $m/n$ , where $m$ and $n$ are relatively prime positive integers. Find $m + n$.
[b]B9.[/b] For two points $(x_1, y_1)$ and $(x_2, y_2)$ in the plane, we define the taxicab distance between them as $|x_1 - x_2| + |y_1 - y_2|$. For example, the taxicab distance between $(-1, 2)$ and $(3,\sqrt2)$ is $6-\sqrt2$. What is the largest number of points Nathan can find in the plane such that the taxicab distance between any two of the points is the same?
[u]Set 4[/u]
[b]B10.[/b] Will wants to insert some × symbols between the following numbers: $$1\,\,\,2\,\,\,3\,\,\,4\,\,\,6$$ to see what kinds of answers he can get. For example, here is one way he can insert $\times$ symbols: $$1 \times 23 \times 4 \times 6 = 552.$$ Will discovers that he can obtain the number $276$. What is the sum of the numbers that he multiplied together to get $276$?
[b]B11.[/b] Let $ABCD$ be a parallelogram with $AB = 5$, $BC = 3$, and $\angle BAD = 60^o$ . Let the angle bisector of $\angle ADC$ meet $AC$ at $E$ and $AB$ at $F$. The length $EF$ can be expressed as $m/n$, where $m$ and $n$ are relatively prime positive integers. What is $m + n$?
[b]B12.[/b] Find the sum of all positive integers $n$ such that $\lfloor \sqrt{n^2 - 2n + 19} \rfloor = n$.
Note: $\lfloor x \rfloor$ denotes the greatest integer less than or equal to $x$.
[u]Set 5[/u]
[b]B13.[/b] This year, February $29$ fell on a Saturday. What is the next year in which February $29$ will be a Saturday?
[b]B14.[/b] Let $f(x) = \frac{1}{x} - 1$. Evaluate $$f\left( \frac{1}{2020}\right) \times f\left( \frac{2}{2020}\right) \times f\left( \frac{3}{2020}\right) \times \times ... \times f\left( \frac{2019}{2020}\right) .$$
[b]B15.[/b] Square $WXYZ$ is inscribed in square $ABCD$ with side length $1$ such that $W$ is on $AB$, $X$ is on $BC$, $Y$ is on $CD$, and $Z$ is on $DA$. Line $W Y$ hits $AD$ and $BC$ at points $P$ and $R$ respectively, and line $XZ$ hits $AB$ and $CD$ at points $Q$ and $S$ respectively. If the area of $WXYZ$ is $\frac{13}{18}$ , then the area of $PQRS$ can be expressed as $m/n$ for relatively prime positive integers $m$ and $n$. What is $m + n$?
PS. You had better use hide for answers. Last sets have been posted [url=https://artofproblemsolving.com/community/c4h2777424p24371574]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2012 ELMO Shortlist, 9
Let $a,b,c$ be distinct positive real numbers, and let $k$ be a positive integer greater than $3$. Show that
\[\left\lvert\frac{a^{k+1}(b-c)+b^{k+1}(c-a)+c^{k+1}(a-b)}{a^k(b-c)+b^k(c-a)+c^k(a-b)}\right\rvert\ge \frac{k+1}{3(k-1)}(a+b+c)\]
and
\[\left\lvert\frac{a^{k+2}(b-c)+b^{k+2}(c-a)+c^{k+2}(a-b)}{a^k(b-c)+b^k(c-a)+c^k(a-b)}\right\rvert\ge \frac{(k+1)(k+2)}{3k(k-1)}(a^2+b^2+c^2).\]
[i]Calvin Deng.[/i]
2011 Croatia Team Selection Test, 1
We define a sequence $a_n$ so that $a_0=1$ and
\[a_{n+1} = \begin{cases} \displaystyle \frac{a_n}2 & \textrm { if } a_n \equiv 0 \pmod 2, \\ a_n + d & \textrm{ otherwise. } \end{cases} \]
for all postive integers $n$.
Find all positive integers $d$ such that there is some positive integer $i$ for which $a_i=1$.
LMT Speed Rounds, 2019 S
[b]p1.[/b] Compute $2020 \cdot \left( 2^{(0\cdot1)} + 9 - \frac{(20^1)}{8}\right)$.
[b]p2.[/b] Nathan has five distinct shirts, three distinct pairs of pants, and four distinct pairs of shoes. If an “outfit” has a shirt, pair of pants, and a pair of shoes, how many distinct outfits can Nathan make?
[b]p3.[/b] Let $ABCD$ be a rhombus such that $\vartriangle ABD$ and $\vartriangle BCD$ are equilateral triangles. Find the angle measure of $\angle ACD$ in degrees.
[b]p4.[/b] Find the units digit of $2019^{2019}$.
[b]p5.[/b] Determine the number of ways to color the four vertices of a square red, white, or blue if two colorings that can be turned into each other by rotations and reflections are considered the same.
[b]p6.[/b] Kathy rolls two fair dice numbered from $1$ to $6$. At least one of them comes up as a $4$ or $5$. Compute the probability that the sumof the numbers of the two dice is at least $10$.
[b]p7.[/b] Find the number of ordered pairs of positive integers $(x, y)$ such that $20x +19y = 2019$.
[b]p8.[/b] Let $p$ be a prime number such that both $2p -1$ and $10p -1$ are prime numbers. Find the sum of all possible values of $p$.
[b]p9.[/b] In a square $ABCD$ with side length $10$, let $E$ be the intersection of $AC$ and $BD$. There is a circle inscribed in triangle $ABE$ with radius $r$ and a circle circumscribed around triangle $ABE$ with radius $R$. Compute $R -r$ .
[b]p10.[/b] The fraction $\frac{13}{37 \cdot 77}$ can be written as a repeating decimal $0.a_1a_2...a_{n-1}a_n$ with $n$ digits in its shortest repeating decimal representation. Find $a_1 +a_2 +...+a_{n-1}+a_n$.
[b]p11.[/b] Let point $E$ be the midpoint of segment $AB$ of length $12$. Linda the ant is sitting at $A$. If there is a circle $O$ of radius $3$ centered at $E$, compute the length of the shortest path Linda can take from $A$ to $B$ if she can’t cross the circumference of $O$.
[b]p12.[/b] Euhan and Minjune are playing tennis. The first one to reach $25$ points wins. Every point ends with Euhan calling the ball in or out. If the ball is called in, Minjune receives a point. If the ball is called out, Euhan receives a point. Euhan always makes the right call when the ball is out. However, he has a $\frac34$ chance of making the right call when the ball is in, meaning that he has a $\frac14$ chance of calling a ball out when it is in. The probability that the ball is in is equal to the probability that the ball is out. If Euhan won, determine the expected number of wrong callsmade by Euhan.
[b]p13.[/b] Find the number of subsets of $\{1, 2, 3, 4, 5, 6,7\}$ which contain four consecutive numbers.
[b]p14.[/b] Ezra and Richard are playing a game which consists of a series of rounds. In each round, one of either Ezra or Richard receives a point. When one of either Ezra or Richard has three more points than the other, he is declared the winner. Find the number of games which last eleven rounds. Two games are considered distinct if there exists a round in which the two games had different outcomes.
[b]p15.[/b] There are $10$ distinct subway lines in Boston, each of which consists of a path of stations. Using any $9$ lines, any pair of stations are connected. However, among any $8$ lines there exists a pair of stations that cannot be reached from one another. It happens that the number of stations is minimized so this property is satisfied. What is the average number of stations that each line passes through?
[b]p16.[/b] There exist positive integers $k$ and $3\nmid m$ for which
$$1 -\frac12 + \frac13 - \frac14 +...+ \frac{1}{53}-\frac{1}{54}+\frac{1}{55}=\frac{3^k \times m}{28\times 29\times ... \times 54\times 55}.$$
Find the value $k$.
[b]p17.[/b] Geronimo the giraffe is removing pellets from a box without replacement. There are $5$ red pellets, $10$ blue pellets, and $15$ white pellets. Determine the probability that all of the red pellets are removed before all the blue pellets and before all of the white pellets are removed.
[b]p18.[/b] Find the remainder when $$70! \left( \frac{1}{4 \times 67}+ \frac{1}{5 \times 66}+...+ \frac{1}{66\times 5}+ \frac{1}{67\times 4} \right)$$ is divided by $71$.
[b]p19.[/b] Let $A_1A_2...A_{12}$ be the regular dodecagon. Let $X$ be the intersection of $A_1A_2$ and $A_5A_{11}$. Given that $X A_2 \cdot A_1A_2 = 10$, find the area of dodecagon.
[b]p20.[/b] Evaluate the following infinite series: $$\sum^{\infty}_{n=1}\sum^{\infty}_{m=1} \frac{n \sec^2m -m \tan^2 n}{3^{m+n}(m+n)}$$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2010 Contests, 2
For each positive integer $n$, find the largest real number $C_n$ with the following property. Given any $n$ real-valued functions $f_1(x), f_2(x), \cdots, f_n(x)$ defined on the closed interval $0 \le x \le 1$, one can find numbers $x_1, x_2, \cdots x_n$, such that $0 \le x_i \le 1$ satisfying
\[|f_1(x_1)+f_2(x_2)+\cdots f_n(x_n)-x_1x_2\cdots x_n| \ge C_n\]
[i]Marko Radovanović, Serbia[/i]
2017 China Team Selection Test, 2
Find the least positive number m such that for any polynimial f(x) with real coefficients, there is a polynimial g(x) with real coefficients (degree not greater than m) such that there exist 2017 distinct number $a_1,a_2,...,a_{2017}$ such that $g(a_i)=f(a_{i+1})$ for i=1,2,...,2017 where indices taken modulo 2017.
2006 Princeton University Math Competition, 6
Evaluate the sum $$\sum_{k=0}^{r} {r \choose k}{{12-r} \choose {6-k}} $$
2007 Iran Team Selection Test, 3
Find all solutions of the following functional equation: \[f(x^{2}+y+f(y))=2y+f(x)^{2}. \]
1977 USAMO, 3
If $ a$ and $ b$ are two of the roots of $ x^4\plus{}x^3\minus{}1\equal{}0$, prove that $ ab$ is a root of $ x^6\plus{}x^4\plus{}x^3\minus{}x^2\minus{}1\equal{}0$.
2009 Germany Team Selection Test, 3
Prove that for any four positive real numbers $ a$, $ b$, $ c$, $ d$ the inequality
\[ \frac {(a \minus{} b)(a \minus{} c)}{a \plus{} b \plus{} c} \plus{} \frac {(b \minus{} c)(b \minus{} d)}{b \plus{} c \plus{} d} \plus{} \frac {(c \minus{} d)(c \minus{} a)}{c \plus{} d \plus{} a} \plus{} \frac {(d \minus{} a)(d \minus{} b)}{d \plus{} a \plus{} b}\ge 0\]
holds. Determine all cases of equality.
[i]Author: Darij Grinberg (Problem Proposal), Christian Reiher (Solution), Germany[/i]
2005 MOP Homework, 2
Determine if there exist four polynomials such that the sum of any three of them has a real root while the sum of any two of them does not.
2017 VJIMC, 3
Let $n \ge 2$ be an integer. Consider the system of equations
\begin{align} x_1+\frac{2}{x_2}=x_2+\frac{2}{x_3}=\dots=x_n+\frac{2}{x_1} \end{align}
1. Prove that $(1)$ has infinitely many real solutions $(x_1,\dotsc,x_n)$ such that the numbers $x_1,\dotsc,x_n$ are distinct.
2. Prove that every solution of $(1)$, such that the numbers $x_1,\dotsc,x_n$ are not all equal, satisfies $\vert x_1x_2\cdots x_n\vert=2^{n/2}$.
2015 Mathematical Talent Reward Programme, MCQ: P 11
$S=\{1,2, \ldots, 6\} .$ Then find out the number of unordered pairs of $(A, B)$ such that $A, B \subseteq S$ and $A \cap B=\phi$
[list=1]
[*] 360
[*] 364
[*] 365
[*] 366
[/list]
1978 Czech and Slovak Olympiad III A, 3
Let $\alpha,\beta,\gamma$ be angles of a triangle. Determine all real triplets $x,y,z$ satisfying the system
\begin{align*}
x\cos\beta+\frac1z\cos\alpha &=1, \\
y\cos\gamma+\frac1x\cos\beta &=1, \\
z\cos\alpha+\frac1y\cos\gamma &=1.
\end{align*}
1969 IMO Shortlist, 37
$(HUN 4)$IMO2 If $a_1, a_2, . . . , a_n$ are real constants, and if $y = \cos(a_1 + x) +2\cos(a_2+x)+ \cdots+ n \cos(a_n + x)$ has two zeros $x_1$ and $x_2$ whose difference is not a multiple of $\pi$, prove that $y = 0.$