This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2002 China Team Selection Test, 1

Tags: algebra
Given a positive integer $ n$, for all positive integers $ a_1, a_2, \cdots, a_n$ that satisfy $ a_1 \equal{} 1$, $ a_{i \plus{} 1} \leq a_i \plus{} 1$, find $ \displaystyle \sum_{i \equal{} 1}^{n} a_1a_2 \cdots a_i$.

2004 China Team Selection Test, 3

Tags: algebra
Find all positive integer $ n$ satisfying the following condition: There exist positive integers $ m$, $ a_1$, $ a_2$, $ \cdots$, $ a_{m\minus{}1}$, such that $ \displaystyle n \equal{} \sum_{i\equal{}1}^{m\minus{}1} a_i(m\minus{}a_i)$, where $ a_1$, $ a_2$, $ \cdots$, $ a_{m\minus{}1}$ may not distinct and $ 1 \leq a_i \leq m\minus{}1$.

2022 Belarusian National Olympiad, 8.8

Tags: algebra
Vitya and Masha are playing a game. At first, Vitya thinks of three different integers. In one move Masha can ask one of the following three numbers: the sum of the numbers, the product of the numbers or the sum of pairwise products of the numbers. Masha asks questions and Vitya immediately answers before Masha asks the next question. a) Prove that Masha can always guess Vitya's numbers. b) What is the least amount of questions Masha needs to ask to guaranteely guess them?

1952 Moscow Mathematical Olympiad, 209

Tags: identity , algebra
Prove the identity: a) $(ax + by + cz)^2 + (bx + cy + az)^2 + (cx + ay + bz)^2 =(cx + by + az)^2 + (bx + ay + cz)^2 + (ax + cy + bz)^2$ b) $(ax + by + cz + du)^2+(bx + cy + dz + au)^2 +(cx + dy + az + bu)^2 + (dx + ay + bz + cu)^2 =$ $(dx + cy + bz + au)^2+(cx + by + az + du)^2 +(bx + ay + dz + cu)^2 + (ax + dy + cz + bu)^2$.

2006 Singapore MO Open, 3

Tags: algebra
Consider the sequence $p_{1},p_{2},...$ of primes such that for each $i\geq2$, either $p_{i}=2p_{i-1}-1$ or $p_{i}=2p_{i-1}+1$. Show that any such sequence has a finite number of terms.

2015 Princeton University Math Competition, B2

Tags: algebra
Let $f$ be a function which takes in $0, 1, 2$ and returns $0, 1, $ or $2$. The values need not be distinct: for instance we could have $f(0) = 1, f(1) = 1, f(2) = 2$. How many such functions are there which satisfy \[f(2) + f(f(0)) + f(f(f(1))) = 5?\]

1980 IMO Longlists, 13

Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.

2022 International Zhautykov Olympiad, 6

Do there exist two bounded sequences $a_1, a_2,\ldots$ and $b_1, b_2,\ldots$ such that for each positive integers $n$ and $m>n$ at least one of the two inequalities $|a_m-a_n|>1/\sqrt{n},$ and $|b_m-b_n|>1/\sqrt{n}$ holds?

2021 LMT Fall, Tie

Tags: algebra
Estimate the value of $e^f$ , where $f = e^e$ .

2022 Thailand Mathematical Olympiad, 4

Find all positive integers $n$ such that there exists a monic polynomial $P(x)$ of degree $n$ with integers coefficients satisfying $$P(a)P(b)\neq P(c)$$ for all integers $a,b,c$.

2007 Brazil National Olympiad, 1

Let $ f(x) \equal{} x^2 \plus{} 2007x \plus{} 1$. Prove that for every positive integer $ n$, the equation $ \underbrace{f(f(\ldots(f}_{n\ {\rm times}}(x))\ldots)) \equal{} 0$ has at least one real solution.

2023 Bulgarian Autumn Math Competition, 12.3

Tags: algebra
Solve in positive integers the equation $$m^{\frac{1}{n}}+n^{\frac{1}{m}}=2+\frac{2}{mn(m+n)^{\frac{1}{m}+\frac{1}{n}}}.$$

2002 IMO Shortlist, 1

Find all functions $f$ from the reals to the reals such that \[f\left(f(x)+y\right)=2x+f\left(f(y)-x\right)\] for all real $x,y$.

1987 IMO Longlists, 7

Tags: function , algebra
Let $f : (0,+\infty) \to \mathbb R$ be a function having the property that $f(x) = f\left(\frac{1}{x}\right)$ for all $x > 0.$ Prove that there exists a function $u : [1,+\infty) \to \mathbb R$ satisfying $u\left(\frac{x+\frac 1x }{2} \right) = f(x)$ for all $x > 0.$

2016 Math Hour Olympiad, 6-7

[u]Round 1[/u] [b]p1.[/b] At a fortune-telling exam, $13$ witches are sitting in a circle. To pass the exam, a witch must correctly predict, for everybody except herself and her two neighbors, whether they will pass or fail. Each witch predicts that each of the $10$ witches she is asked about will fail. How many witches could pass? [b]p2.[/b] Out of $152$ coins, $7$ are counterfeit. All counterfeit coins have the same weight, and all real coins have the same weight, but counterfeit coins are lighter than real coins. How can you find $19$ real coins if you are allowed to use a balance scale three times? [b]p3.[/b] The digits of a number $N$ increase from left to right. What could the sum of the digits of $9 \times N$ be? [b]p4.[/b] The sides and diagonals of a pentagon are colored either blue or red. You can choose three vertices and flip the colors of all three lines that join them. Can every possible coloring be turned all blue by a sequence of such moves? [img]https://cdn.artofproblemsolving.com/attachments/5/a/644aa7dd995681fc1c813b41269f904283997b.png[/img] [b]p5.[/b] You have $100$ pancakes, one with a single blueberry, one with two blueberries, one with three blueberries, and so on. The pancakes are stacked in a random order. Count the number of blueberries in the top pancake and call that number $N$. Pick up the stack of the top $N$ pancakes and flip it upside down. Prove that if you repeat this counting-and-flipping process, the pancake with one blueberry will eventually end up at the top of the stack. [u]Round 2[/u] [b]p6.[/b] A circus owner will arrange $100$ fleas on a long string of beads, each flea on her own bead. Once arranged, the fleas start jumping using the following rules. Every second, each flea chooses the closest bead occupied by one or more of the other fleas, and then all fleas jump simultaneously to their chosen beads. If there are two places where a flea could jump, she jumps to the right. At the start, the circus owner arranged the fleas so that, after some time, they all gather on just two beads. What is the shortest amount of time it could take for this to happen? [b]p7.[/b] The faraway land of Noetheria has $2016$ cities. There is a nonstop flight between every pair of cities. The price of a nonstop ticket is the same in both directions, but flights between different pairs of cities have different prices. Prove that you can plan a route of $2015$ consecutive flights so that each flight is cheaper than the previous one. It is permissible to visit the same city several times along the way. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2014 Contests, 1

Let $({{x}_{n}}),({{y}_{n}})$ be two positive sequences defined by ${{x}_{1}}=1,{{y}_{1}}=\sqrt{3}$ and \[ \begin{cases} {{x}_{n+1}}{{y}_{n+1}}-{{x}_{n}}=0 \\ x_{n+1}^{2}+{{y}_{n}}=2 \end{cases} \] for all $n=1,2,3,\ldots$. Prove that they are converges and find their limits.

2019 Teodor Topan, 3

Let be a natural number $ m\ge 2. $ [b]a)[/b] Let be $ m $ pairwise distinct rational numbers. Prove that there is an ordering of these numbers such that these are terms of an arithmetic progression. [b]b)[/b] Given that for any $ m $ pairwise distinct real numbers there is an ordering of them such that they are terms of an arithmetic sequence, determine the number $ m. $ [i]Bogdan Blaga[/i]

2024 Malaysian IMO Training Camp, 3

Find all functions $f:\mathbb{R}^+\rightarrow\mathbb{R}^+$ such that for all $x, y\in\mathbb{R}^+$, \[ \frac{f(x)}{y^2} - \frac{f(y)}{x^2} \le \left(\frac{1}{x}-\frac{1}{y}\right)^2\] ($\mathbb{R}^+$ denotes the set of positive real numbers.) [i](Proposed by Ivan Chan Guan Yu)[/i]

2017 QEDMO 15th, 12

Tags: integer , algebra
Let $a$ be a real number such that $\left(a + \frac{1}{a}\right)^2=11$. For which $n\in N$ is $a^n + \frac{1}{a^n}$ an integer? Does this depend on the exact value of $a$?

2007 CHKMO, 2

Tags: algebra
For a positive integer k, let $f_{1}(k)$ be the square of the sum of the digits of k. (For example $f_{1}(123)=(1+2+3)^{2}=36$.) Let $f_{n+1}(k)=f_{1}(f_{n}(k))$. Determine the value of the $f_{2007}(2^{2006})$. Justify your claim.

2023 Moldova Team Selection Test, 4

Polynomials $(P_n(X))_{n\in\mathbb{N}}$ are defined as: $$P_0(X)=0, \quad P_1(X)=X+2,$$ $$P_n(X)=P_{n-1}(X)+3P_{n-1}(X)\cdot P_{n-2}(X)+P_{n-2}(X), \quad (\forall) n\geq2.$$ Show that if $ k $ divides $m$ then $P_k(X)$ divides $P_m(X).$

1991 Cono Sur Olympiad, 3

Given a positive integrer number $n$ ($n\ne 0$), let $f(n)$ be the average of all the positive divisors of $n$. For example, $f(3)=\frac{1+3}{2}=2$, and $f(12)=\frac{1+2+3+4+6+12}{6}=\frac{14}{3}$. [b]a[/b] Prove that $\frac{n+1}{2} \ge f(n)\ge \sqrt{n}$. [b]b[/b] Find all $n$ such that $f(n)=\frac{91}{9}$.

1989 IMO Shortlist, 4

Prove that $ \forall n > 1, n \in \mathbb{N}$ the equation \[ \sum^n_{k\equal{}1} \frac{x^k}{k!} \plus{} 1 \equal{} 0\] has no rational roots.

2020 Thailand TST, 4

Let $n$ be a positive integer and let $P$ be the set of monic polynomials of degree $n$ with complex coefficients. Find the value of \[ \min_{p \in P} \left \{ \max_{|z| = 1} |p(z)| \right \} \]

2005 South East Mathematical Olympiad, 7

(1) Find the possible number of roots for the equation $|x + 1| + |x + 2| + |x + 3| = a$, where $x \in R$ and $a$ is parameter. (2) Let $\{ a_1, a_2, \ldots, a_n \}$ be an arithmetic progression, $n \in \mathbb{N}$, and satisfy the condition \[ \sum^{n}_{i=1}|a_i| = \sum^{n}_{i=1}|a_{i} + 1| = \sum^{n}_{i=1}|a_{i} - 2| = 507. \] Find the maximum value of $n$.