This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 357

2010 All-Russian Olympiad, 4

There are 100 apples on the table with total weight of 10 kg. Each apple weighs no less than 25 grams. The apples need to be cut for 100 children so that each of the children gets 100 grams. Prove that you can do it in such a way that each piece weighs no less than 25 grams.

1985 IMO Longlists, 10

Let $m$ boxes be given, with some balls in each box. Let $n < m$ be a given integer. The following operation is performed: choose $n$ of the boxes and put $1$ ball in each of them. Prove: [i](a) [/i]If $m$ and $n$ are relatively prime, then it is possible, by performing the operation a finite number of times, to arrive at the situation that all the boxes contain an equal number of balls. [i](b)[/i] If $m$ and $n$ are not relatively prime, there exist initial distributions of balls in the boxes such that an equal distribution is not possible to achieve.

2025 Junior Macedonian Mathematical Olympiad, 3

Is there an infinite sequence of prime numbers $p_1, p_2, ..., p_n, ...,$ such that for every $i \in \mathbb{N}, p_{i + 1} \in \{2p_i - 1, 2p_i + 1\}$ is satisfied? Explain the answer.

2004 All-Russian Olympiad, 4

A rectangular array has 9 rows and 2004 columns. In the 9 * 2004 cells of the table we place the numbers from 1 to 2004, each 9 times. And we do this in such a way that two numbers, which stand in exactly the same column in and differ around at most by 3. Find the smallest possible sum of all numbers in the first row.

1996 AIME Problems, 10

Find the smallest positive integer solution to $\tan 19x^\circ=\frac{\cos 96^\circ+\sin 96^\circ}{\cos 96^\circ-\sin 96^\circ}.$

Kvant 2019, M2587

In each cell, a strip of length $100$ is worth a chip. You can change any $2$ neighboring chips and pay $1$ rouble, and you can also swap any $2$ chips for free, between which there are exactly $4$ chips. For what is the smallest amount of rubles you can rearrange chips in reverse order?

2007 Pre-Preparation Course Examination, 2

There is a WORD game with the following rules. There are finite number of relations $U_{i}\longrightarrow V_{i}$($U_{i},V_{i}$ are words). There is are two words $A,B$. We start from $A$, and we want to reach to $B$. At each step we can change one subword $U_{i}$ to $V_{i}$. Prove that there does not exist an algorithm that picks up $A,B$ and $U_{i}$'s,$V_{i}$'s and decides whether we can reach from $A$ to $B$ or not.

2010 ELMO Shortlist, 3

2010 MOPpers are assigned numbers 1 through 2010. Each one is given a red slip and a blue slip of paper. Two positive integers, A and B, each less than or equal to 2010 are chosen. On the red slip of paper, each MOPper writes the remainder when the product of A and his or her number is divided by 2011. On the blue slip of paper, he or she writes the remainder when the product of B and his or her number is divided by 2011. The MOPpers may then perform either of the following two operations: [list] [*] Each MOPper gives his or her red slip to the MOPper whose number is written on his or her blue slip. [*] Each MOPper gives his or her blue slip to the MOPper whose number is written on his or her red slip.[/list] Show that it is always possible to perform some number of these operations such that each MOPper is holding a red slip with his or her number written on it. [i]Brian Hamrick.[/i]

2011 China Girls Math Olympiad, 7

There are $n$ boxes ${B_1},{B_2},\ldots,{B_n}$ from left to right, and there are $n$ balls in these boxes. If there is at least $1$ ball in ${B_1}$, we can move one to ${B_2}$. If there is at least $1$ ball in ${B_n}$, we can move one to ${B_{n - 1}}$. If there are at least $2$ balls in ${B_k}$, $2 \leq k \leq n - 1$ we can move one to ${B_{k - 1}}$, and one to ${B_{k + 1}}$. Prove that, for any arrangement of the $n$ balls, we can achieve that each box has one ball in it.

2007 Iran MO (3rd Round), 5

Look at these fractions. At firs step we have $ \frac{0}{1}$ and $ \frac{1}{0}$, and at each step we write $ \frac{a\plus{}b}{c\plus{}d}$ between $ \frac{a}{b}$ and $ \frac{c}{d}$, and we do this forever \[ \begin{array}{ccccccccccccccccccccccccc}\frac{0}{1}&&&&&&&&\frac{1}{0}\\ \frac{0}{1}&&&&\frac{1}{1}&&&&\frac{1}{0}\\ \frac{0}{1}&&\frac{1}{2}&&\frac{1}{1}&&\frac{2}{1}&&\frac{1}{0}\\ \frac{0}{1}&\frac{1}{3}&\frac{1}{2}&\frac{2}{3}&\frac{1}{1}&\frac{3}{2}&\frac{2}{1}&\frac{3}{1}&\frac{1}{0}\\ &&&&\dots\end{array}\] a) Prove that each of these fractions is irreducible. b) In the plane we have put infinitely many circles of diameter 1, over each integer on the real line, one circle. The inductively we put circles that each circle is tangent to two adjacent circles and real line, and we do this forever. Prove that points of tangency of these circles are exactly all the numbers in part a(except $ \frac{1}{0}$). [img]http://i2.tinypic.com/4m8tmbq.png[/img] c) Prove that in these two parts all of positive rational numbers appear. If you don't understand the numbers, look at [url=http://upload.wikimedia.org/wikipedia/commons/2/21/Arabic_numerals-en.svg]here[/url].

2020 APMO, 5

Let $n \geq 3$ be a fixed integer. The number $1$ is written $n$ times on a blackboard. Below the blackboard, there are two buckets that are initially empty. A move consists of erasing two of the numbers $a$ and $b$, replacing them with the numbers $1$ and $a+b$, then adding one stone to the first bucket and $\gcd(a, b)$ stones to the second bucket. After some finite number of moves, there are $s$ stones in the first bucket and $t$ stones in the second bucket, where $s$ and $t$ are positive integers. Find all possible values of the ratio $\frac{t}{s}$.

Today's calculation of integrals, 890

A function $f_n(x)\ (n=1,\ 2,\ \cdots)$ is defined by $f_1(x)=x$ and \[f_n(x)=x+\frac{e}{2}\int_0^1 f_{n-1}(t)e^{x-t}dt\ (n=2,\ 3,\ \cdots)\]. Find $f_n(x)$.

2021 Taiwan TST Round 3, A

A magician intends to perform the following trick. She announces a positive integer $n$, along with $2n$ real numbers $x_1 < \dots < x_{2n}$, to the audience. A member of the audience then secretly chooses a polynomial $P(x)$ of degree $n$ with real coefficients, computes the $2n$ values $P(x_1), \dots , P(x_{2n})$, and writes down these $2n$ values on the blackboard in non-decreasing order. After that the magician announces the secret polynomial to the audience. Can the magician find a strategy to perform such a trick?

2001 Saint Petersburg Mathematical Olympiad, 9.7

300 students participate on the international math olympiad. Every student speaks in exactly two of the official languages of the olympiad and every language is spoken by 100 people (it is known that students speak only the official languages). Prove that the students can be sited on a circular table, such that no two neighbors spoke the same language.

2012 China Team Selection Test, 1

In a simple graph $G$, we call $t$ pairwise adjacent vertices a $t$[i]-clique[/i]. If a vertex is connected with all other vertices in the graph, we call it a [i]central[/i] vertex. Given are two integers $n,k$ such that $\dfrac {3}{2} \leq \dfrac{1}{2} n < k < n$. Let $G$ be a graph on $n$ vertices such that [b](1)[/b] $G$ does not contain a $(k+1)$-[i]clique[/i]; [b](2)[/b] if we add an arbitrary edge to $G$, that creates a $(k+1)$-[i]clique[/i]. Find the least possible number of [i]central[/i] vertices in $G$.

2010 China Team Selection Test, 3

Let $n_1,n_2, \cdots, n_{26}$ be pairwise distinct positive integers satisfying (1) for each $n_i$, its digits belong to the set $\{1,2\}$; (2) for each $i,j$, $n_i$ can't be obtained from $n_j$ by adding some digits on the right. Find the smallest possible value of $\sum_{i=1}^{26} S(n_i)$, where $S(m)$ denotes the sum of all digits of a positive integer $m$.

2005 APMO, 3

Prove that there exists a triangle which can be cut into 2005 congruent triangles.

2014 Taiwan TST Round 1, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

1999 Belarusian National Olympiad, 8

Let $n$ be an integer greater than 2. A positive integer is said to be [i]attainable [/i]if it is 1 or can be obtained from 1 by a sequence of operations with the following properties: 1.) The first operation is either addition or multiplication. 2.) Thereafter, additions and multiplications are used alternately. 3.) In each addition, one can choose independently whether to add 2 or $n$ 4.) In each multiplication, one can choose independently whether to multiply by 2 or by $n$. A positive integer which cannot be so obtained is said to be [i]unattainable[/i]. [b]a.)[/b] Prove that if $n\geq 9$, there are infinitely many unattainable positive integers. [b]b.)[/b] Prove that if $n=3$, all positive integers except 7 are attainable.

2007 IMO Shortlist, 6

In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a [i]clique[/i] if each two of them are friends. (In particular, any group of fewer than two competitiors is a clique.) The number of members of a clique is called its [i]size[/i]. Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room. [i]Author: Vasily Astakhov, Russia[/i]

1970 Regional Competition For Advanced Students, 4

Find all real solutions of the following set of equations: \[72x^3+4xy^2=11y^3\] \[27x^5-45x^4y-10x^2y^3=\frac{-143}{32}y^5\]

2007 Baltic Way, 6

Freddy writes down numbers $1, 2,\ldots ,n$ in some order. Then he makes a list of all pairs $(i, j)$ such that $1\le i<j\le n$ and the $i$-th number is bigger than the $j$-th number in his permutation. After that, Freddy repeats the following action while possible: choose a pair $(i, j)$ from the current list, interchange the $i$-th and the $j$-th number in the current permutation, and delete $(i, j)$ from the list. Prove that Freddy can choose pairs in such an order that, after the process finishes, the numbers in the permutation are in ascending order.

2012 ELMO Shortlist, 2

Determine whether it's possible to cover a $K_{2012}$ with a) 1000 $K_{1006}$'s; b) 1000 $K_{1006,1006}$'s. [i]David Yang.[/i]

1989 Turkey Team Selection Test, 1

Let $\mathbb{Z}^+$ denote the set of positive integers. Find all functions $f: \mathbb{Z}^+ \times \mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ such that [list=i] [*] $f(m,m)=m$ [*] $f(m,k) = f(k,m)$ [*] $f(m, m+k) = f(m,k)$[/list] , for each $m,k \in \mathbb{Z}^+$.

2013 ELMO Shortlist, 4

Let $n$ be a positive integer. The numbers $\{1, 2, ..., n^2\}$ are placed in an $n \times n$ grid, each exactly once. The grid is said to be [i]Muirhead-able[/i] if the sum of the entries in each column is the same, but for every $1 \le i,k \le n-1$, the sum of the first $k$ entries in column $i$ is at least the sum of the first $k$ entries in column $i+1$. For which $n$ can one construct a Muirhead-able array such that the entries in each column are decreasing? [i]Proposed by Evan Chen[/i]