This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 357

2009 Baltic Way, 18

Let $n>2$ be an integer. In a country there are $n$ cities and every two of them are connected by a direct road. Each road is assigned an integer from the set $\{1, 2,\ldots ,m\}$ (different roads may be assigned the same number). The [i]priority[/i] of a city is the sum of the numbers assigned to roads which lead to it. Find the smallest $m$ for which it is possible that all cities have a different priority.

2008 USAMO, 5

Three nonnegative real numbers $ r_1$, $ r_2$, $ r_3$ are written on a blackboard. These numbers have the property that there exist integers $ a_1$, $ a_2$, $ a_3$, not all zero, satisfying $ a_1r_1 \plus{} a_2r_2 \plus{} a_3r_3 \equal{} 0$. We are permitted to perform the following operation: find two numbers $ x$, $ y$ on the blackboard with $ x \le y$, then erase $ y$ and write $ y \minus{} x$ in its place. Prove that after a finite number of such operations, we can end up with at least one $ 0$ on the blackboard.

2009 National Olympiad First Round, 32

There are $ n$ sets having $ 4$ elements each. The difference set of any two of the sets is equal to one of the $ n$ sets. $ n$ can be at most ? (A difference set of $A$ and $B$ is $ (A\setminus B)\cup(B\setminus A) $) $\textbf{(A)}\ 3 \qquad\textbf{(B)}\ 5 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 15 \qquad\textbf{(E)}\ \text{None}$

1985 IMO Shortlist, 13

Let $m$ boxes be given, with some balls in each box. Let $n < m$ be a given integer. The following operation is performed: choose $n$ of the boxes and put $1$ ball in each of them. Prove: [i](a) [/i]If $m$ and $n$ are relatively prime, then it is possible, by performing the operation a finite number of times, to arrive at the situation that all the boxes contain an equal number of balls. [i](b)[/i] If $m$ and $n$ are not relatively prime, there exist initial distributions of balls in the boxes such that an equal distribution is not possible to achieve.

1986 IMO Shortlist, 12

To each vertex of a regular pentagon an integer is assigned, so that the sum of all five numbers is positive. If three consecutive vertices are assigned the numbers $x,y,z$ respectively, and $y<0$, then the following operation is allowed: $x,y,z$ are replaced by $x+y,-y,z+y$ respectively. Such an operation is performed repeatedly as long as at least one of the five numbers is negative. Determine whether this procedure necessarily comes to an end after a finite number of steps.

1989 IMO Shortlist, 19

A natural number is written in each square of an $ m \times n$ chess board. The allowed move is to add an integer $ k$ to each of two adjacent numbers in such a way that non-negative numbers are obtained. (Two squares are adjacent if they have a common side.) Find a necessary and sufficient condition for it to be possible for all the numbers to be zero after finitely many operations.

1999 Junior Balkan MO, 1

Tags: algorithm
Let $ a,b,c,x,y$ be five real numbers such that $ a^3 \plus{} ax \plus{} y \equal{} 0$, $ b^3 \plus{} bx \plus{} y \equal{} 0$ and $ c^3 \plus{} cx \plus{} y \equal{} 0$. If $ a,b,c$ are all distinct numbers prove that their sum is zero. [i]Ciprus[/i]