Found problems: 357
1982 IMO Longlists, 7
Find all solutions $(x, y) \in \mathbb Z^2$ of the equation
\[x^3 - y^3 = 2xy + 8.\]
2018 Slovenia Team Selection Test, 1
Let $n$ be a positive integer. On the table, we have $n^2$ ornaments in $n$ different colours, not necessarily $n$ of each colour. Prove that we can hang the ornaments on $n$ Christmas trees in such a way that there are exactly $n$ ornaments on each tree and the ornaments on every tree are of at most $2$ different colours.
2005 APMO, 4
In a small town, there are $n \times n$ houses indexed by $(i, j)$ for $1 \leq i, j \leq n$ with $(1, 1)$ being the house at the top left corner, where $i$ and $j$ are the row and column indices, respectively. At time 0, a fire breaks out at the house indexed by $(1, c)$, where $c \leq \frac{n}{2}$. During each subsequent time interval $[t, t+1]$, the fire fighters defend a house which is not yet on fire while the fire spreads to all undefended [i]neighbors[/i] of each house which was on fire at time t. Once a house is defended, it remains so all the time. The process ends when the fire can no longer spread. At most how many houses can be saved by the fire fighters?
A house indexed by $(i, j)$ is a [i]neighbor[/i] of a house indexed by $(k, l)$ if $|i - k| + |j - l|=1$.
2011 IMO Shortlist, 1
For any integer $d > 0,$ let $f(d)$ be the smallest possible integer that has exactly $d$ positive divisors (so for example we have $f(1)=1, f(5)=16,$ and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^k\right)$ divides $f\left(2^{k+1}\right).$
[i]Proposed by Suhaimi Ramly, Malaysia[/i]
1990 AIME Problems, 3
Let $ P_1$ be a regular $ r$-gon and $ P_2$ be a regular $ s$-gon $ (r\geq s\geq 3)$ such that each interior angle of $ P_1$ is $ \frac {59}{58}$ as large as each interior angle of $ P_2$. What's the largest possible value of $ s$?
1995 All-Russian Olympiad, 3
Does there exist a sequence of natural numbers in which every natural number occurs exactly once, such that for each $k = 1, 2, 3, \dots$ the sum of the first $k$ terms of the sequence is divisible by $k$?
[i]A. Shapovalov[/i]
2012 Brazil Team Selection Test, 1
For any integer $d > 0,$ let $f(d)$ be the smallest possible integer that has exactly $d$ positive divisors (so for example we have $f(1)=1, f(5)=16,$ and $f(6)=12$). Prove that for every integer $k \geq 0$ the number $f\left(2^k\right)$ divides $f\left(2^{k+1}\right).$
[i]Proposed by Suhaimi Ramly, Malaysia[/i]
2014 Purple Comet Problems, 22
For positive integers $m$ and $n$, let $r(m, n)$ be the remainder when $m$ is divided by $n$. Find the smallest positive integer $m$ such that
\[r(m, 1) + r(m, 2) + r(m, 3) +\cdots+ r(m, 10) = 4.\]
2013 IMO Shortlist, C1
Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.
2006 APMO, 2
Prove that every positive integer can be written as a finite sum of distinct integral powers of the golden ratio.
2010 Contests, 1
Let $a,b$ be two positive integers and $a>b$.We know that $\gcd(a-b,ab+1)=1$ and $\gcd(a+b,ab-1)=1$. Prove that $(a-b)^2+(ab+1)^2$ is not a perfect square.
2019 Tournament Of Towns, 3
There are 100 visually identical coins of three types: golden, silver and copper. There is at least one coin of each type. Each golden coin weighs 3 grams, each silver coins weighs 2 grams and each copper coin weighs 1 gram. How to find the type of each coin performing no more than 101 measurements on a balance scale with no weights.
PEN A Problems, 94
Find all $n \in \mathbb{N}$ such that $3^{n}-n$ is divisible by $17$.
2009 Harvard-MIT Mathematics Tournament, 2
Suppose N is a $6$-digit number having base-$10$ representation $\underline{a}\text{ }\underline{b}\text{ }\underline{c}\text{ }\underline{d}\text{ }\underline{e}\text{ }\underline{f}$. If $N$ is $6/7$ of the number having base-$10$ representation $\underline{d}\text{ }\underline{e}\text{ }\underline{f}\text{ }\underline{a}\text{ }\underline{b}\text{ }\underline{c}$, find $N$.
2010 ELMO Problems, 2
2010 MOPpers are assigned numbers 1 through 2010. Each one is given a red slip and a blue slip of paper. Two positive integers, A and B, each less than or equal to 2010 are chosen. On the red slip of paper, each MOPper writes the remainder when the product of A and his or her number is divided by 2011. On the blue slip of paper, he or she writes the remainder when the product of B and his or her number is divided by 2011. The MOPpers may then perform either of the following two operations:
[list]
[*] Each MOPper gives his or her red slip to the MOPper whose number is written on his or her blue slip.
[*] Each MOPper gives his or her blue slip to the MOPper whose number is written on his or her red slip.[/list]
Show that it is always possible to perform some number of these operations such that each MOPper is holding a red slip with his or her number written on it.
[i]Brian Hamrick.[/i]
2007 All-Russian Olympiad, 4
[i]A. Akopyan, A. Akopyan, A. Akopyan, I. Bogdanov[/i]
A conjurer Arutyun and his assistant Amayak are going to show following super-trick. A circle is drawn on the board in the room. Spectators mark $2007$ points on this circle, after that Amayak
removes one of them. Then Arutyun comes to the room and shows a semicircle, to which the removed point belonged. Explain, how Arutyun and Amayak may show this super-trick.
1990 IMO Shortlist, 6
Given an initial integer $ n_0 > 1$, two players, $ {\mathcal A}$ and $ {\mathcal B}$, choose integers $ n_1$, $ n_2$, $ n_3$, $ \ldots$ alternately according to the following rules :
[b]I.)[/b] Knowing $ n_{2k}$, $ {\mathcal A}$ chooses any integer $ n_{2k \plus{} 1}$ such that
\[ n_{2k} \leq n_{2k \plus{} 1} \leq n_{2k}^2.
\]
[b]II.)[/b] Knowing $ n_{2k \plus{} 1}$, $ {\mathcal B}$ chooses any integer $ n_{2k \plus{} 2}$ such that
\[ \frac {n_{2k \plus{} 1}}{n_{2k \plus{} 2}}
\]
is a prime raised to a positive integer power.
Player $ {\mathcal A}$ wins the game by choosing the number 1990; player $ {\mathcal B}$ wins by choosing the number 1. For which $ n_0$ does :
[b]a.)[/b] $ {\mathcal A}$ have a winning strategy?
[b]b.)[/b] $ {\mathcal B}$ have a winning strategy?
[b]c.)[/b] Neither player have a winning strategy?
1977 IMO Shortlist, 5
There are $2^n$ words of length $n$ over the alphabet $\{0, 1\}$. Prove that the following algorithm generates the sequence $w_0, w_1, \ldots, w_{2^n-1}$ of all these words such that any two consecutive words differ in exactly one digit.
(1) $w_0 = 00 \ldots 0$ ($n$ zeros).
(2) Suppose $w_{m-1} = a_1a_2 \ldots a_n,\quad a_i \in \{0, 1\}$. Let $e(m)$ be the exponent of $2$ in the representation of $n$ as a product of primes, and let $j = 1 + e(m)$. Replace the digit $a_j$ in the word $w_{m-1}$ by $1 - a_j$. The obtained word is $w_m$.
2014 Middle European Mathematical Olympiad, 4
For integers $n \ge k \ge 0$ we define the [i]bibinomial coefficient[/i] $\left( \binom{n}{k} \right)$ by
\[ \left( \binom{n}{k} \right) = \frac{n!!}{k!!(n-k)!!} .\]
Determine all pairs $(n,k)$ of integers with $n \ge k \ge 0$ such that the corresponding bibinomial coefficient is an integer.
[i]Remark: The double factorial $n!!$ is defined to be the product of all even positive integers up to $n$ if $n$ is even and the product of all odd positive integers up to $n$ if $n$ is odd. So e.g. $0!! = 1$, $4!! = 2 \cdot 4 = 8$, and $7!! = 1 \cdot 3 \cdot 5 \cdot 7 = 105$.[/i]
2007 IMO, 3
In a mathematical competition some competitors are friends. Friendship is always mutual. Call a group of competitors a [i]clique[/i] if each two of them are friends. (In particular, any group of fewer than two competitiors is a clique.) The number of members of a clique is called its [i]size[/i].
Given that, in this competition, the largest size of a clique is even, prove that the competitors can be arranged into two rooms such that the largest size of a clique contained in one room is the same as the largest size of a clique contained in the other room.
[i]Author: Vasily Astakhov, Russia[/i]
2019 CMIMC, 8
Consider the following graph algorithm (where $V$ is the set of vertices and $E$ the set of edges in $G$).
$\textbf{procedure }\textsc{s}(G)$
$\qquad \textbf{if } |V| = 0\textbf{ then return true}$
$\qquad \textbf{for }(u,v)\textbf{ in }E\textbf{ do}$
$\qquad\qquad H\gets G-u-v$
$\qquad\qquad\textbf{if } \textsc{s}(H)\textbf{ then return true}$
$\qquad\textbf{return false}$
Here $G - u - v$ means the subgraph of $G$ which does not contain vertices $u,v$ and all edges using them. How many graphs $G$ with vertex set $\{1,2,3,4,5,6\}$ and [i]exactly[/i] $6$ edges satisfy $s(G)$ being true?
2017 CMIMC Computer Science, 2
We are given the following function $f$, which takes a list of integers and outputs another list of integers. (Note that here the list is zero-indexed.)
\begin{tabular}{l}
1: \textbf{FUNCTION} $f(A)$ \\
2: $\quad$ \textbf{FOR} $i=1,\ldots, \operatorname{length}(A)-1$: \\
3: $\quad\quad$ $A[i]\leftarrow A[A[i]]$ \\
4: $\quad\quad$ $A[0]\leftarrow A[0]-1$ \\
5: $\quad$ \textbf{RETURN} $A$
\end{tabular}
Suppose the list $B$ is equal to $[0,1,2,8,2,0,1,7,0]$. In how many entries do $B$ and $f(B)$ differ?
2008 Bundeswettbewerb Mathematik, 4
On a bookcase there are $ n \geq 3$ books side by side by different authors. A librarian considers the first and second book from left and exchanges them iff they are not alphabetically sorted. Then he is doing the same operation with the second and third book from left etc. Using this procedure he iterates through the bookcase three times from left to right. Considering all possible initial book configurations how many of them will then be alphabetically sorted?
2012 India IMO Training Camp, 3
In a $2\times n$ array we have positive reals s.t. the sum of the numbers in each of the $n$ columns is $1$. Show that we can select a number in each column s.t. the sum of the selected numbers in each row is at most $\frac{n+1}4$.
2004 All-Russian Olympiad, 3
On a table there are 2004 boxes, and in each box a ball lies. I know that some the balls are white and that the number of white balls is even. In each case I may point to two arbitrary boxes and ask whether in the box contains at least a white ball lies. After which minimum number of questions I can indicate two boxes for sure, in which white balls lie?