This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 33

2011 Gheorghe Vranceanu, 2

$ a>0,\quad\lim_{n\to\infty }\sum_{i=1}^n \frac{1}{n+a^i} $

2012 Gheorghe Vranceanu, 2

With positive $ a,b,c, $ prove: $$ \frac{a}{8a^2+5b^2+3c^2} +\frac{b}{8b^2+5c^2+3a^2} +\frac{c}{8c^2+5a^2+3b^2}\le\frac{1}{16}\left( \frac{1}{a} +\frac{1}{b} +\frac{1}{c} \right) $$ [i]Titu Zvonaru[/i]

2016 India Regional Mathematical Olympiad, 5

Let $x,y,z$ be non-negative real numbers such that $xyz=1$. Prove that $$(x^3+2y)(y^3+2z)(z^3+2x) \ge 27.$$

2020-IMOC, A1

$\definecolor{A}{RGB}{190,0,60}\color{A}\fbox{A1.}$ Find all $f:\mathbb{R}\rightarrow \mathbb{R}$ such that $$\definecolor{A}{RGB}{80,0,200}\color{A} x^4+y^4+z^4\ge f(xy)+f(yz)+f(zx)\ge xyz(x+y+z)$$holds for all $a,b,c\in\mathbb{R}$. [i]Proposed by [/i][b][color=#FFFF00]usjl[/color][/b]. [color=#B6D7A8]#1733[/color]

2021-IMOC, A6

Let $n$ be some positive integer and $a_1 , a_2 , \dots , a_n$ be real numbers. Denote $$S_0 = \sum_{i=1}^{n} a_i^2 , \hspace{1cm} S_1 = \sum_{i=1}^{n} a_ia_{i+1} , \hspace{1cm} S_2 = \sum_{i=1}^{n} a_ia_{i+2},$$ where $a_{n+1} = a_1$ and $a_{n+2} = a_2.$ 1. Show that $S_0 - S_1 \geq 0$. 2. Show that $3$ is the minimum value of $C$ such that for any $n$ and $a_1 , a_2 , \dots , a_n,$ there holds $C(S_0 - S_1) \geq S_1 - S_2$.

2025 Malaysian IMO Team Selection Test, 3

Let $\mathbb R$ be the set of real numbers. Find all functions $f:\mathbb{R}\rightarrow \mathbb{R}$ where there exist a real constant $c\ge 0$ such that $$x^3+y^2f(y)+zf(z^2)\ge cf(xyz)$$ holds for all reals $x$, $y$, $z$ that satisfy $x+y+z\ge 0$. [i]Proposed by Ivan Chan Kai Chin[/i]

2018 Middle European Mathematical Olympiad, 1

Let $a,b$ and $c$ be positive real numbers satisfying $abc=1.$ Prove that$$\frac{a^2-b^2}{a+bc}+\frac{b^2-c^2}{b+ca}+\frac{c^2-a^2}{c+ab}\leq a+b+c-3.$$

2016 AMC 12/AHSME, 15

Tags: am-gm , geometry
All the numbers $2, 3, 4, 5, 6, 7$ are assigned to the six faces of a cube, one number to each face. For each of the eight vertices of the cube, a product of three numbers is computed, where the three numbers are the numbers assigned to the three faces that include that vertex. What is the greatest possible value of the sum of these eight products? $\textbf{(A)}\ 312 \qquad \textbf{(B)}\ 343 \qquad \textbf{(C)}\ 625 \qquad \textbf{(D)}\ 729 \qquad \textbf{(E)}\ 1680$