This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

Cono Sur Shortlist - geometry, 2003.G1

Let $O$ be the circumcenter of the isosceles triangle $ABC$ ($AB = AC$). Let $P$ be a point of the segment $AO$ and $Q$ the symmetric of $P$ with respect to the midpoint of $AB$. If $OQ$ cuts $AB$ at $K$ and the circle that passes through $A, K$ and $O$ cuts $AC$ in $L$, show that $\angle ALP = \angle CLO$.

2022 EGMO, 1

Let $ABC$ be an acute-angled triangle in which $BC<AB$ and $BC<CA$. Let point $P$ lie on segment $AB$ and point $Q$ lie on segment $AC$ such that $P \neq B$, $Q \neq C$ and $BQ = BC = CP$. Let $T$ be the circumcenter of triangle $APQ$, $H$ the orthocenter of triangle $ABC$, and $S$ the point of intersection of the lines $BQ$ and $CP$. Prove that $T$, $H$, and $S$ are collinear.

2007 Sharygin Geometry Olympiad, 9

Suppose two convex quadrangles are such that the sides of each of them lie on the perpendicular bisectors of the sides of the other one. Determine their angles,

2017 IOM, 1

Let $ABCD$ be a parallelogram in which angle at $B$ is obtuse and $AD>AB$. Points $K$ and $L$ on $AC$ such that $\angle ADL=\angle KBA$(the points $A, K, C, L$ are all different, with $K$ between $A$ and $L$). The line $BK$ intersects the circumcircle $\omega$ of $ABC$ at points $B$ and $E$, and the line $EL$ intersects $\omega$ at points $E$ and $F$. Prove that $BF||AC$.

2017 Baltic Way, 14

Let $P$ be a point inside the acute angle $\angle BAC$. Suppose that $\angle ABP = \angle ACP = 90^{\circ}$. The points $D$ and $E$ are on the segments $BA$ and $CA$, respectively, such that $BD = BP$ and $CP = CE$. The points $F$ and $G$ are on the segments $AC$ and $AB$, respectively, such that $DF$ is perpendicular to $AB$ and $EG$ is perpendicular to $AC$. Show that $PF = PG$.