This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2014 Cezar Ivănescu, 2

[b]a)[/b] Give an example of function $ f:\mathbb{R}\longrightarrow\mathbb{R}_{>0 } $ that admits a primitive $ F:\mathbb{R}\longrightarrow\mathbb{R}_{>0 } $ having the property that $ F^e $ is a primitive of $ f^e. $ [b]b)[/b] Prove that there is no derivable function $ g:\mathbb{R}\longrightarrow\mathbb{R} $ that has a primitive $ G:\mathbb{R}\longrightarrow\mathbb{R} $ such that $ e^G $ is a primitive of $ e^g. $

2010 Laurențiu Panaitopol, Tulcea, 1

Let be two real numbers $ a<b $ and a function $ f:[a,b]\longrightarrow\mathbb{R} $ having the property that if the sequence $ \left(f\left( x_n \right)\right)_{n\ge 1} $ is convergent, then the sequence $ \left( x_n \right)_{n\ge 1} $ is convergent. [b]a)[/b] Prove that if $ f $ admits antiderivatives, then $ f $ is integrable. [b]b)[/b] Is the converse of [b]a)[/b] true? [i]Marcelina Popa[/i]

2013 Bogdan Stan, 3

$ \int \frac{1+2x^3}{1+x^2-2x^3+x^6} dx $ [i]Ion Nedelcu[/i] and [i]Lucian Tutescu[/i]

2025 Romania National Olympiad, 3

a) Let $a\in \mathbb{R}$ and $f \colon \mathbb{R} \to \mathbb{R}$ be a continuous function for which there exists an antiderivative $F \colon \mathbb{R} \to \mathbb{R} $, such that $F(x)+a\cdot f(x) \geq 0$, for any $x \in \mathbb{R}$, and$ \lim_{|x| \to \infty} \frac{F(x)}{e^{|\alpha \cdot x|}}=0$ holds for any $\alpha \in \mathbb{R}^*$. Prove that $F(x) \geq 0$ for all $x \in \mathbb{R}$. b) Let $n\geq 2$ be a positive integer, $g \in \mathbb{R}[X]$, $g = X^n + a_1X^{n-1}+ \dots + a_{n-1}X+a_n$ be a polynomial with all of its roots being real, and $f \colon \mathbb{R} \to \mathbb{R}$ a polynomial function such that $f(x)+a_1\cdot f'(x)+a_2\cdot f^{(2)}(x)+\dots+a_n\cdot f^{(n)}(x) \geq 0$ for any $x \in \mathbb{R}$. Prove that $f(x) \geq 0$ for all $x \in \mathbb{R}$.

1985 Traian Lălescu, 1.2

Is there a real interval $ I $ for which there exists a primitivable function $ f:I\longrightarrow I $ with the property that $ (f\circ f) (x)=-x, $ for all $ x\in I $ ?