Found problems: 32
2017 Balkan MO Shortlist, N5
Given a positive odd integer $n$, show that the arithmetic mean of fractional parts $\{\frac{k^{2n}}{p}\}, k=1,..., \frac{p-1}{2}$ is the same for infinitely many primes $p$ .
2020 IMO Shortlist, N3
A deck of $n > 1$ cards is given. A positive integer is written on each card. The deck has the property that the arithmetic mean of the numbers on each pair of cards is also the geometric mean of the numbers on some collection of one or more cards.
For which $n$ does it follow that the numbers on the cards are all equal?
[i]Proposed by Oleg Košik, Estonia[/i]
1959 AMC 12/AHSME, 13
The arithmetic mean (average) of a set of $50$ numbers is $38$. If two numbers, namely, $45$ and $55$, are discarded, the mean of the remaining set of numbers is:
$ \textbf{(A)}\ 36.5 \qquad\textbf{(B)}\ 37\qquad\textbf{(C)}\ 37.2\qquad\textbf{(D)}\ 37.5\qquad\textbf{(E)}\ 37.52 $
2023 239 Open Mathematical Olympiad, 6
An arrangement of 12 real numbers in a row is called [i]good[/i] if for any four consecutive numbers the arithmetic mean of the first and last numbers is equal to the product of the two middle numbers. How many good arrangements are there in which the first and last numbers are 1, and the second number is the same as the third?
1959 Putnam, B7
For each positive integer $n$, let $f_n$ be a real-valued symmetric function of $n$ real variables. Suppose that for all $n$ and all real numbers $x_1,\ldots,x_n, x_{n+1},y$ it is true that
$\;(1)\; f_{n}(x_1 +y ,\ldots, x_n +y) = f_{n}(x_1 ,\ldots, x_n) +y,$
$\;(2)\;f_{n}(-x_1 ,\ldots, -x_n) =-f_{n}(x_1 ,\ldots, x_n),$
$\;(3)\; f_{n+1}(f_{n}(x_1,\ldots, x_n),\ldots, f_{n}(x_1,\ldots, x_n), x_{n+1}) =f_{n+1}(x_1 ,\ldots, x_{n}).$
Prove that $f_{n}(x_{1},\ldots, x_n) =\frac{x_{1}+\cdots +x_{n}}{n}.$
2024 AMC 10, 9
Real numbers $a,b$ and $c$ have arithmetic mean $0$. The arithmetic mean of $a^2, b^2$ and $c^2$ is $10$. What is the arithmetic mean of $ab, ac$ and $bc$?
$
\textbf{(A) }-5 \qquad
\textbf{(B) }-\frac{10}{3} \qquad
\textbf{(C) }-\frac{10}{9} \qquad
\textbf{(D) }0 \qquad
\textbf{(E) }\frac{10}{9} \qquad
$
2020 AMC 10, 2
The numbers $3, 5, 7, a,$ and $b$ have an average (arithmetic mean) of $15$. What is the average of $a$ and $b$?
$\textbf{(A) } 0 \qquad\textbf{(B) } 15 \qquad\textbf{(C) } 30 \qquad\textbf{(D) } 45 \qquad\textbf{(E) } 60$
2022 AMC 10, 8
A data set consists of $6$ (not distinct) positive integers: $1$, $7$, $5$, $2$, $5$, and $X$. The average (arithmetic mean) of the $6$ numbers equals a value in the data set. What is the sum of all positive values of $X$?
$\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40$
1997 Bosnia and Herzegovina Team Selection Test, 5
$a)$ Prove that for all positive integers $n$ exists a set $M_n$ of positive integers with exactly $n$ elements and:
$i)$ Arithmetic mean of arbitrary non-empty subset of $M_n$ is integer
$ii)$ Geometric mean of arbitrary non-empty subset of $M_n$ is integer
$iii)$ Both arithmetic mean and geometry mean of arbitrary non-empty subset of $M_n$ is integer
$b)$ Does there exist infinite set $M$ of positive integers such that arithmetic mean of arbitrary non-empty subset of $M$ is integer
2017 India PRMO, 15
Integers $1, 2, 3, ... ,n$, where $n > 2$, are written on a board. Two numbers $m, k$ such that $1 < m < n, 1 < k < n$ are removed and the average of the remaining numbers is found to be $17$. What is the maximum sum of the two removed numbers?
2023 AMC 12/AHSME, 18
Last academic year Yolanda and Zelda took different courses that did not necessarily administer the same number of quizzes during each of the two semesters. Yolanda's average on all the quizzes she took during the first semester was 3 points higher than Zelda's average on all the quizzes she took during the first semester. Yolanda's average on all the quizzes she took during the second semester was 18 points higher than her average for the first semester and was again 3 points higher than Zelda's average on all the quizzes Zelda took during her second semester. Which one of the following statements cannot possibly be true?
(A) Yolanda's quiz average for the academic year was 22 points higher than Zelda's.
(B) Zelda's quiz average for the academic year was higher than Yolanda's.
(C) Yolanda's quiz average for the academic year was 3 points higher than Zelda's.
(D) Zelda's quiz average for the academic year equaled Yolanda's.
(E) If Zelda had scored 3 points higher on each quiz she took, then she would have had the same average for the academic year as Yolanda.
2022 AMC 12/AHSME, 6
A data set consists of $6$ (not distinct) positive integers: $1$, $7$, $5$, $2$, $5$, and $X$. The average (arithmetic mean) of the $6$ numbers equals a value in the data set. What is the sum of all positive values of $X$?
$\textbf{(A) } 10 \qquad \textbf{(B) } 26 \qquad \textbf{(C) } 32 \qquad \textbf{(D) } 36 \qquad \textbf{(E) } 40$
2023 Brazil Team Selection Test, 3
Show that for all positive real numbers $a, b, c$, we have that $$\frac{a+b+c}{3}-\sqrt[3]{abc} \leq \max\{(\sqrt{a}-\sqrt{b})^2, (\sqrt{b}-\sqrt{c})^2, (\sqrt{c}-\sqrt{a})^2\}$$
2016 India PRMO, 16
For positive real numbers $x$ and $y$, define their special mean to be average of their arithmetic and geometric means. Find the total number of pairs of integers $(x, y)$, with $x \le y$, from the set of numbers $\{1,2,...,2016\}$, such that the special mean of $x$ and $y$ is a perfect square.
2014 India PRMO, 8
Let $S$ be a set of real numbers with mean $M$. If the means of the sets $S\cup \{15\}$ and $S\cup \{15,1\}$ are $M + 2$ and $M + 1$, respectively, then how many elements does $S$ have?
1935 Moscow Mathematical Olympiad, 001
Find the ratio of two numbers if the ratio of their arithmetic mean to their geometric mean is $25 : 24$
2018 Regional Competition For Advanced Students, 3
Let $n \ge 3$ be a natural number.
Determine the number $a_n$ of all subsets of $\{1, 2,...,n\}$ consisting of three elements such that one of them is the arithmetic mean of the other two.
[i]Proposed by Walther Janous[/i]
2018 Pan-African Shortlist, N6
Prove that there are infinitely many integers $n$ such that both the arithmetic mean of its divisors and the geometric mean of its divisors are integers.
(Recall that for $k$ positive real numbers, $a_1, a_2, \dotsc, a_k$, the arithmetic mean is $\frac{a_1 +a_2 +\dotsb +a_k}{k}$, and the geometric mean is $\sqrt[k]{a_1 a_2\dotsb a_k}$.)
1959 AMC 12/AHSME, 18
The arithmetic mean (average) of the first $n$ positive integers is:
$ \textbf{(A)}\ \frac{n}{2} \qquad\textbf{(B)}\ \frac{n^2}{2}\qquad\textbf{(C)}\ n\qquad\textbf{(D)}\ \frac{n-1}{2}\qquad\textbf{(E)}\ \frac{n+1}{2} $
2017 Romania Team Selection Test, P4
Given a positive odd integer $n$, show that the arithmetic mean of fractional parts $\{\frac{k^{2n}}{p}\}, k=1,..., \frac{p-1}{2}$ is the same for infinitely many primes $p$ .
1999 AMC 12/AHSME, 3
The number halfway between $ \frac {1}{8}$ and $ \displaystyle \frac {1}{10}$ is
$ \textbf{(A)}\ \frac {1}{80} \qquad \textbf{(B)}\ \frac {1}{40} \qquad \textbf{(C)}\ \frac {1}{18} \qquad \textbf{(D)}\ \frac {1}{9} \qquad \textbf{(E)}\ \frac {9}{80}$
2016 AMC 10, 7
The mean, median, and mode of the $7$ data values $60, 100, x, 40, 50, 200, 90$ are all equal to $x$. What is the value of $x$?
$\textbf{(A)}\ 50 \qquad\textbf{(B)}\ 60 \qquad\textbf{(C)}\ 75 \qquad\textbf{(D)}\ 90 \qquad\textbf{(E)}\ 100$
2010 AMC 8, 4
What is the sum of the mean, median, and mode of the numbers, $2,3,0,3,1,4,0,3$?
$ \textbf{(A)}\ 6.5 \qquad\textbf{(B)}\ 7\qquad\textbf{(C)}\ 7.5\qquad\textbf{(D)}\ 8.5\qquad\textbf{(E)}\ 9 $
2022 Romania Team Selection Test, 2
Let $n \geq 2$ be an integer and let \[M=\bigg\{\frac{a_1 + a_2 + ... + a_k}{k}: 1 \le k \le n\text{ and }1 \le a_1 < \ldots < a_k \le n\bigg\}\] be the set of the arithmetic means of the elements of all non-empty subsets of $\{1, 2, ..., n\}$. Find \[\min\{|a - b| : a, b \in M\text{ with } a \neq b\}.\]
2014 JHMMC 7 Contest, 11
What number is exactly halfway between $\frac 1 6$ and $\frac 1 4$?