This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 93

1955 Moscow Mathematical Olympiad, 313

On the numerical line, arrange a system of closed segments of length $1$ without common points (endpoints included) so that any infinite arithmetic progression with any non zero difference and any first term has a common point with a segment of the system.

1935 Moscow Mathematical Olympiad, 008

Prove that if the lengths of the sides of a triangle form an arithmetic progression, then the radius of the inscribed circle is one third of one of the heights of the triangle.

Albania Round 2, 2

Sides of a triangle form an arithmetic sequence with common difference $2$, and its area is $6 \text{ cm }^2$. Find its sides.

1991 Tournament Of Towns, (319) 6

An arithmetical progression (whose difference is not equal to zero) consists of natural numbers without any nines in its decimal notation. (a) Prove that the number of its terms is less than $100$. (b) Give an example of such a progression with $72$ terms. (c) Prove that the number of terms in any such progression does not exceed $72$. (V. Bugaenko and Tarasov, Moscow)

2016 Costa Rica - Final Round, LR3

Consider an arithmetic progression made up of $100$ terms. If the sum of all the terms of the progression is $150$ and the sum of the even terms is $50$, find the sum of the squares of the $100$ terms of the progression.

1980 IMO, 1

Given three infinite arithmetic progressions of natural numbers such that each of the numbers 1,2,3,4,5,6,7 and 8 belongs to at least one of them, prove that the number 1980 also belongs to at least one of them.

2020 Iranian Our MO, 5

Concider two sequences $x_n=an+b$, $y_n=cn+d$ where $a,b,c,d$ are natural numbers and $gcd(a,b)=gcd(c,d)=1$, prove that there exist infinite $n$ such that $x_n$, $y_n$ are both square-free. [i]Proposed by Siavash Rahimi Shateranloo, Matin Yadollahi[/i] [b]Rated 3[/b]

1998 VJIMC, Problem 1

Let $a$ and $d$ be two positive integers. Prove that there exists a constant $K$ such that every set of $K$ consecutive elements of the arithmetic progression $\{a+nd\}_{n=1}^\infty$ contains at least one number which is not prime.

2019 IFYM, Sozopol, 1

Find the least value of $k\in \mathbb{N}$ with the following property: There doesn’t exist an arithmetic progression with 2019 members, from which exactly $k$ are integers.

2020 Estonia Team Selection Test, 1

Let $a_1, a_2,...$ a sequence of real numbers. For each positive integer $n$, we denote $m_n =\frac{a_1 + a_2 +... + a_n}{n}$. It is known that there exists a real number $c$ such that for any different positive integers $i, j, k$: $(i - j) m_k + (j - k) m_i + (k - i) m_j = c$. Prove that the sequence $a_1, a_2,..$ is arithmetic

2006 Tournament of Towns, 4

Every term of an infinite geometric progression is also a term of a given infinite arithmetic progression. Prove that the common ratio of the geometric progression is an integer. (4)

2020 Kazakhstan National Olympiad, 4

Alice and Bob play a game on the infinite side of a checkered strip, in which the cells are numbered with consecutive integers from left to right (..., $-2$, $-1$, $0$, $1$, $2$, ...). Alice in her turn puts one cross in any free cell, and Bob in his turn puts zeros in any 2020 free cells. Alice will win if he manages to get such 4 cells marked with crosses, the corresponding cell numbers will form an arithmetic progression. Bob's goal in this game is to prevent Alice from winning. They take turns and Alice moves first. Will Alice be able to win no matter how Bob plays?

1983 IMO Shortlist, 14

Is it possible to choose $1983$ distinct positive integers, all less than or equal to $10^5$, no three of which are consecutive terms of an arithmetic progression?

2006 Grigore Moisil Urziceni, 2

Let be a bipartition of the set formed by the first $ 13 $ nonnegative numbers. Prove that at least one of these two subsets that form this partition contains an arithmetic progression.

1998 China Team Selection Test, 1

Find $k \in \mathbb{N}$ such that [b]a.)[/b] For any $n \in \mathbb{N}$, there does not exist $j \in \mathbb{Z}$ which satisfies the conditions $0 \leq j \leq n - k + 1$ and $\left( \begin{array}{c} n\\ j\end{array} \right), \left( \begin{array}{c} n\\ j + 1\end{array} \right), \ldots, \left( \begin{array}{c} n\\ j + k - 1\end{array} \right)$ forms an arithmetic progression. [b]b.)[/b] There exists $n \in \mathbb{N}$ such that there exists $j$ which satisfies $0 \leq j \leq n - k + 2$, and $\left( \begin{array}{c} n\\ j\end{array} \right), \left( \begin{array}{c} n\\ j + 1\end{array} \right), \ldots , \left( \begin{array}{c} n\\ j + k - 2\end{array} \right)$ forms an arithmetic progression. Find all $n$ which satisfies part [b]b.)[/b]

2021 Romanian Master of Mathematics Shortlist, C1

Determine the largest integer $n\geq 3$ for which the edges of the complete graph on $n$ vertices can be assigned pairwise distinct non-negative integers such that the edges of every triangle have numbers which form an arithmetic progression.

2021 Irish Math Olympiad, 6

A sequence whose first term is positive has the property that any given term is the area of an equilateral triangle whose perimeter is the preceding term. If the first three terms form an arithmetic progression, determine all possible values of the first term.

2000 Estonia National Olympiad, 1

Let $x \ne 1$ be a fixed positive number and $a_1, a_2, a_3,...$ some kind of number sequence. Prove that $x^{a_1},x^{a_2},x^{a_3},...$ is a non-constant geometric sequence if and only if $a_1, a_2, a_3,...$. is a non-constant arithmetic sequence.