Found problems: 325
2011 N.N. Mihăileanu Individual, 4
Consider a triangle $ ABC $ having incenter $ I $ and inradius $ r. $ Let $ D $ be the tangency of $ ABC $ 's incircle with $ BC, $ and $ E $ on the line $ BC $ such that $ AE $ is perpendicular to $ BC, $ and $ M\neq E $ on the segment $ AE $ such that $ AM=r. $
[b]a)[/b] Give an idenity for $ \frac{BD}{DC} $ involving only the lengths of the sides of the triangle.
[b]b)[/b] Prove that $ AB \cdot \overrightarrow{IC} +BC\cdot \overrightarrow{IA} +CA\cdot \overrightarrow{IB} =0. $
[b]c)[/b] Show that $ MI $ passes through the middle of the side $ BC. $
[i]Cătălin Zârnă[/i]
2004 Bulgaria Team Selection Test, 3
Find the maximum possible value of the inradius of a triangle whose vertices lie in the interior, or on the boundary, of a unit square.
2008 Grigore Moisil Intercounty, 3
Let $ A_1,B_1,C_1 $ be points on the sides (excluding their endpoints) $ BC,CA,AB, $ respectively, of a triangle $ ABC, $ such that $ \angle A_1AB =\angle B_1BC=\angle C_1CA. $ Let $ A^* $ be the intersection of $ BB_1 $ with $ CC_1,B^* $ be the intersection of $ CC_1 $ with $ AA_1, $ and $ C^* $ be the intersection of $ AA_1 $ with $ BB_1. $ Denote with $ r_A,r_B,r_C $ the inradii of $ A^*BC,AB^*C,ABC^*, $ respectively. Prove that
$$ \frac{r_A}{BC}=\frac{r_B}{CA}=\frac{r_C}{AB} $$
if and only if $ ABC $ is equilateral.
[i]Daniel Văcărețu[/i]
2014 Belarus Team Selection Test, 1
Let $\Gamma_B$ and $\Gamma_C$ be excircles of an acute-angled triangle $ABC$ opposite to its vertices $B$ and $C$, respectively. Let $C_1$ and $L$ be the tangent points of $\Gamma_C$ and the side $AB$ and the line $BC$ respectively. Let $B_1$ and $M$ be the tangent points of $\Gamma_B$ and the side $AC$ and the line $BC$, respectively. Let $X$ be the point of intersection of the lines $LC_1$ and $MB_1$. Prove that $AX$ is equal to the inradius of the triangle $ABC$.
(A. Voidelevich)
1968 Vietnam National Olympiad, 2
$L$ and $M$ are two parallel lines a distance $d$ apart. Given $r$ and $x$, construct a triangle $ABC$, with $A$ on $L$, and $B$ and $C$ on $M$, such that the inradius is $r$, and angle $A = x$. Calculate angles $B$ and $C$ in terms of $d$, $r$ and $x$. If the incircle touches the side $BC$ at $D$, find a relation between $BD$ and $DC$
2007 Moldova Team Selection Test, 3
Consider a triangle $ABC$, with corresponding sides $a,b,c$, inradius $r$ and circumradius $R$. If $r_{A}, r_{B}, r_{C}$ are the radii of the respective excircles of the triangle, show that
\[a^{2}\left(\frac 2{r_{A}}-\frac{r}{r_{B}r_{C}}\right)+b^{2}\left(\frac 2{r_{B}}-\frac{r}{r_{A}r_{C}}\right)+c^{2}\left(\frac 2{r_{C}}-\frac{r}{r_{A}r_{B}}\right)=4(R+3r) \]
2001 AIME Problems, 12
A sphere is inscribed in the tetrahedron whose vertices are $A=(6,0,0), B=(0,4,0), C=(0,0,2),$ and $D=(0,0,0).$ The radius of the sphere is $m/n,$ where $m$ and $n$ are relatively prime positive integers. Find $m+n.$
2022 Yasinsky Geometry Olympiad, 6
In the triangle$ABC$ ($AC > AB$), point $N$ is the midpoint of $BC$, and $I$ is the intersection point of the angle bisectors. Ray $AI$ intersects the circumscribed circle of triangle $ABC$ at point $W$, a perpendicular $WF$ is drawn from it on side $AC$. Find the length of the segment $CF$ , if the radius of the circle inscribed in the triangle $ABC$ is equal to $r$ and $\angle INB = 45^o$.
(Gryhoriy Filippovskyi)
1999 French Mathematical Olympiad, Problem 3
For which acute-angled triangles is the ratio of the smallest side to the inradius the maximum?
1989 IMO Shortlist, 1
$ ABC$ is a triangle, the bisector of angle $ A$ meets the circumcircle of triangle $ ABC$ in $ A_1$, points $ B_1$ and $ C_1$ are defined similarly. Let $ AA_1$ meet the lines that bisect the two external angles at $ B$ and $ C$ in $ A_0$. Define $ B_0$ and $ C_0$ similarly. Prove that the area of triangle $ A_0B_0C_0 \equal{} 2 \cdot$ area of hexagon $ AC_1BA_1CB_1 \geq 4 \cdot$ area of triangle $ ABC$.
1964 IMO, 3
A circle is inscribed in a triangle $ABC$ with sides $a,b,c$. Tangents to the circle parallel to the sides of the triangle are contructe. Each of these tangents cuts off a triagnle from $\triangle ABC$. In each of these triangles, a circle is inscribed. Find the sum of the areas of all four inscribed circles (in terms of $a,b,c$).
1985 Bundeswettbewerb Mathematik, 2
The insphere of any tetrahedron has radius $r$. The four tangential planes parallel to the side faces of the tetrahedron cut from the tetrahedron four smaller tetrahedrons whose in-sphere radii are $r_1, r_2, r_3$ and $r_4$. Prove that $$r_1 + r_2 + r_3 + r_4 = 2r$$
2005 Spain Mathematical Olympiad, 3
In a triangle with sides $a, b, c$ the side $a$ is the arithmetic mean of $b$ and $c$. Prove that:
a) $0^o \le A \le 60^o$.
b) The height relative to side $a$ is three times the inradius $r$.
c) The distance from the circumcenter to side $a$ is $R - r$, where $R$ is the circumradius.
2003 India IMO Training Camp, 8
Let $ABC$ be a triangle, and let $r, r_1, r_2, r_3$ denoted its inradius and the exradii opposite the vertices $A,B,C$, respectively. Suppose $a>r_1, b>r_2, c>r_3$. Prove that
(a) triangle $ABC$ is acute,
(b) $a+b+c>r+r_1+r_2+r_3$.
2000 Harvard-MIT Mathematics Tournament, 36
If, in a triangle of sides $a, b, c$, the incircle has radius $\frac{b+c-a}{2}$, what is the magnitude of $\angle A$?
Estonia Open Senior - geometry, 2000.2.4
The diagonals of the square $ABCD$ intersect at $P$ and the midpoint of the side $AB$ is $E$. Segment $ED$ intersects the diagonal $AC$ at point $F$ and segment $EC$ intersects the diagonal $BD$ at $G$. Inside the quadrilateral $EFPG$, draw a circle of radius $r$ tangent to all the sides of this quadrilateral. Prove that $r = | EF | - | FP |$.
1995 Rioplatense Mathematical Olympiad, Level 3, 2
In a circle of center $O$ and radius $r$, a triangle $ABC$ of orthocenter $H$ is inscribed. It is considered a triangle $A'B'C'$ whose sides have by length the measurements of the segments $AB, CH$ and $2r$. Determine the triangle $ABC$ so that the area of the triangle $A'B'C'$ is maximum.
1993 Spain Mathematical Olympiad, 3
Prove that in every triangle the diameter of the incircle is not greater than the radius of the circumcircle.
1994 Baltic Way, 16
The Wonder Island is inhabited by Hedgehogs. Each Hedgehog consists of three segments of unit length having a common endpoint, with all three angles between them $120^{\circ}$. Given that all Hedgehogs are lying flat on the island and no two of them touch each other, prove that there is a finite number of Hedgehogs on Wonder Island.
2011 BMO TST, 2
The area and the perimeter of the triangle with sides $10,8,6$ are equal. Find all the triangles with integral sides whose area and perimeter are equal.
V Soros Olympiad 1998 - 99 (Russia), 10.5
The radius of the circle inscribed in triangle $ABC$ is equal to $r$. This circle is tangent to $BC$ at point $M$ and divides the segment $AM$ in ratio $k$ (starting from vertex $A$). Find the sum of the radii of the circles inscribed in triangles $AMB$ and $AMC$.
2005 German National Olympiad, 5
[b](a)[/b] [Problem for class 11]
Let r be the inradius and $r_a$, $r_b$, $r_c$ the exradii of a triangle ABC. Prove that $\frac{1}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}$.
[b](b)[/b] [Problem for classes 12/13]
Let r be the radius of the insphere and let $r_a$, $r_b$, $r_c$, $r_d$ the radii of the four exspheres of a tetrahedron ABCD. (An [i]exsphere[/i] of a tetrahedron is a sphere touching one sideface and the extensions of the three other sidefaces.)
Prove that $\frac{2}{r}=\frac{1}{r_a}+\frac{1}{r_b}+\frac{1}{r_c}+\frac{1}{r_d}$.
I am really sorry for posting these, but else, Orl will probably post them. This time, we really did not have any challenging problem on the DeMO. But at least, the problems were simple enough that I solved all of them. ;)
Darij
2012 Today's Calculation Of Integral, 847
Consider a right-angled triangle with $AB=1,\ AC=\sqrt{3},\ \angle{BAC}=\frac{\pi}{2}.$ Let $P_1,\ P_2,\ \cdots\cdots,\ P_{n-1}\ (n\geq 2)$ be the points which are closest from $A$, in this order and obtained by dividing $n$ equally parts of the line segment $AB$. Denote by $A=P_0,\ B=P_n$, answer the questions as below.
(1) Find the inradius of $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$.
(2) Denote by $S_n$ the total sum of the area of the incircle for $\triangle{P_kCP_{k+1}}\ (0\leq k\leq n-1)$.
Let $I_n=\frac{1}{n}\sum_{k=0}^{n-1} \frac{1}{3+\left(\frac{k}{n}\right)^2}$, show that $nS_n\leq \frac {3\pi}4I_n$, then find the limit $\lim_{n\to\infty} I_n$.
(3) Find the limit $\lim_{n\to\infty} nS_n$.
2009 Brazil Team Selection Test, 1
Let $r$ be a positive real number. Prove that the number of right triangles with prime positive integer sides that have an inradius equal to $r$ are zero or a power of $2$.
[hide=original wording]Seja r um numero real positivo. Prove que o numero de triangulos retangulos com lados inteiros positivos primos entre si que possuem inraio igual a r e zero ou uma potencia de 2.[/hide]
2010 Contests, 3
Let $ I $ be the incenter of triangle $ ABC $. The incircle touches $ BC, CA, AB$ at points $ P, Q, R $. A circle passing through $ B , C $ is tangent to the circle $I$ at point $ X $, a circle passing through $ C , A $ is tangent to the circle $I$ at point $ Y $, and a circle passing through $ A , B $ is tangent to the circle $I$ at point $ Z $, respectively. Prove that three lines $ PX, QY, RZ $ are concurrent.