This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

Kvant 2024, M2809

Given is a triangle $ABC$ and the points $M, P$ lie on the segments $AB, BC$, respectively, such that $AM=BC$ and $CP=BM$. If $AP$ and $CM$ meet at $O$ and $2\angle AOM=\angle ABC$, find the measure of $\angle ABC$.

2024 Bulgaria National Olympiad, 2

Given is a triangle $ABC$ and the points $M, P$ lie on the segments $AB, BC$, respectively, such that $AM=BC$ and $CP=BM$. If $AP$ and $CM$ meet at $O$ and $2\angle AOM=\angle ABC$, find the measure of $\angle ABC$.

2024 Kosovo Team Selection Test, P2

Let $\omega$ be a circle and let $A$ be a point lying outside of $\omega$. The tangents from $A$ to $\omega$ touch $\omega$ at points $B$ and $C$. Let $M$ be the midpoint of $BC$ and let $D$ a point on the side $BC$ different from $M$. The circle with diameter $AD$ intersects $\omega$ at points $X$ and $Y$ and the circumcircle of $\bigtriangleup ABC$ again at $E$. Prove that $AD$, $EM$, and $XY$ are concurrent.