This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 167

2008 Alexandru Myller, 2

There are no integers $ a,b,c $ that satisfy $ \left( a+b\sqrt{-3}\right)^{17}=c+\sqrt{-3} . $ [i]Dorin Andrica, Mihai Piticari[/i]

2004 Romania Team Selection Test, 7

Let $a,b,c$ be 3 integers, $b$ odd, and define the sequence $\{x_n\}_{n\geq 0}$ by $x_0=4$, $x_1=0$, $x_2=2c$, $x_3=3b$ and for all positive integers $n$ we have \[ x_{n+3} = ax_{n-1}+bx_n + cx_{n+1} . \] Prove that for all positive integers $m$, and for all primes $p$ the number $x_{p^m}$ is divisible by $p$.

1992 AIME Problems, 4

In Pascal's Triangle, each entry is the sum of the two entries above it. The first few rows of the triangle are shown below. \[\begin{array}{c@{\hspace{8em}} c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{6pt}}c@{\hspace{4pt}}c@{\hspace{2pt}} c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{2pt}}c@{\hspace{3pt}}c@{\hspace{6pt}} c@{\hspace{6pt}}c@{\hspace{6pt}}c} \vspace{4pt} \text{Row 0: } & & & & & & & 1 & & & & & & \\\vspace{4pt} \text{Row 1: } & & & & & & 1 & & 1 & & & & & \\\vspace{4pt} \text{Row 2: } & & & & & 1 & & 2 & & 1 & & & & \\\vspace{4pt} \text{Row 3: } & & & & 1 & & 3 & & 3 & & 1 & & & \\\vspace{4pt} \text{Row 4: } & & & 1 & & 4 & & 6 & & 4 & & 1 & & \\\vspace{4pt} \text{Row 5: } & & 1 & & 5 & &10& &10 & & 5 & & 1 & \\\vspace{4pt} \text{Row 6: } & 1 & & 6 & &15& &20& &15 & & 6 & & 1 \end{array}\] In which row of Pascal's Triangle do three consecutive entries occur that are in the ratio $3: 4: 5$?

2001 VJIMC, Problem 2

Prove that for any prime $p\ge5$, the number $$\sum_{0<k<\frac{2p}3}\binom pk$$is divisible by $p^2$.

2013 BMT Spring, P1

Prove that for all positive integers $m$ and $n$, $$\frac1m\cdot\binom{2n}0-\frac1{m+1}\cdot\binom{2n}1+\frac1{m+2}\cdot\binom{2n}2-\ldots+\frac1{m+2n}\cdot\binom{2n}{n2}>0$$

KoMaL A Problems 2020/2021, A. 787

Let $p_n$ denote the $n^{\text{th}}$ prime number and define $a_n=\lfloor p_n\nu\rfloor$ for all positive integers $n$ where $\nu$ is a positive irrational number. Is it possible that there exist only finitely many $k$ such that $\binom{2a_k}{a_k}$ is divisible by $p_i^{10}$ for all $i=1,2,\ldots,2020?$ [i]Proposed by Superguy and ayan.nmath[/i]

2008 Federal Competition For Advanced Students, P1, 1

What is the remainder of the number $1 \binom{2008}{0 }+2\binom{2008}{1}+ ...+2009\binom{2008}{2008}$ when divided by $2008$?

2020 Greece Team Selection Test, 3

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

2018 CMIMC Number Theory, 5

It is given that there exist unique integers $m_1,\ldots, m_{100}$ such that \[0\leq m_1 < m_2 < \cdots < m_{100}\quad\text{and}\quad 2018 = \binom{m_1}1 + \binom{m_2}2 + \cdots + \binom{m_{100}}{100}.\] Find $m_1 + m_2 + \cdots + m_{100}$.

1980 AMC 12/AHSME, 20

A box contains 2 pennies, 4 nickels, and 6 dimes. Six coins are drawn without replacement, with each coin having an equal probability of being chosen. What is the probability that the value of coins drawn is at least 50 cents? $\text{(A)} \ \frac{37}{924} \qquad \text{(B)} \ \frac{91}{924} \qquad \text{(C)} \ \frac{127}{924} \qquad \text{(D)} \ \frac{132}{924} \qquad \text{(E)} \ \text{none of these}$

2006 Alexandru Myller, 1

For an odd prime $ p, $ show that $ \sum_{k=1}^{p-1} \frac{k^p-k}{p}\equiv \frac{1+p}{2}\pmod p . $

2014 Contests, 1

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]

2006 Irish Math Olympiad, 4

Let $n$ be a positive integer. Find the greatest common divisor of the numbers $\binom{2n}{1},\binom{2n}{3},\binom{2n}{5},...,\binom{2n}{2n-1}$.

1998 IMO Shortlist, 4

For any two nonnegative integers $n$ and $k$ satisfying $n\geq k$, we define the number $c(n,k)$ as follows: - $c\left(n,0\right)=c\left(n,n\right)=1$ for all $n\geq 0$; - $c\left(n+1,k\right)=2^{k}c\left(n,k\right)+c\left(n,k-1\right)$ for $n\geq k\geq 1$. Prove that $c\left(n,k\right)=c\left(n,n-k\right)$ for all $n\geq k\geq 0$.

2014 VJIMC, Problem 3

Let $k$ be a positive even integer. Show that $$\sum_{n=0}^{k/2}(-1)^n\binom{k+2}n\binom{2(k-n)+1}{k+1}=\frac{(k+1)(k+2)}2.$$

2012 ELMO Shortlist, 8

Fix two positive integers $a,k\ge2$, and let $f\in\mathbb{Z}[x]$ be a nonconstant polynomial. Suppose that for all sufficiently large positive integers $n$, there exists a rational number $x$ satisfying $f(x)=f(a^n)^k$. Prove that there exists a polynomial $g\in\mathbb{Q}[x]$ such that $f(g(x))=f(x)^k$ for all real $x$. [i]Victor Wang.[/i]

2018 China Team Selection Test, 5

Given a positive integer $k$, call $n$ [i]good[/i] if among $$\binom{n}{0},\binom{n}{1},\binom{n}{2},...,\binom{n}{n}$$ at least $0.99n$ of them are divisible by $k$. Show that exists some positive integer $N$ such that among $1,2,...,N$, there are at least $0.99N$ good numbers.

2020 Azerbaijan IMO TST, 2

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

2011 China Western Mathematical Olympiad, 3

Let $n \geq 2$ be a given integer $a)$ Prove that one can arrange all the subsets of the set $\{1,2... ,n\}$ as a sequence of subsets $A_{1}, A_{2},\cdots , A_{2^{n}}$, such that $|A_{i+1}| = |A_{i}| + 1$ or $|A_{i}| - 1$ where $i = 1,2,3,\cdots , 2^{n}$ and $A_{2^{n} + 1} = A_{1}$ $b)$ Determine all possible values of the sum $\sum \limits_{i = 1}^{2^n} (-1)^{i}S(A_{i})$ where $S(A_{i})$ denotes the sum of all elements in $A_{i}$ and $S(\emptyset) = 0$, for any subset sequence $A_{1},A_{2},\cdots ,A_{2^n}$ satisfying the condition in $a)$

1990 IMO Longlists, 44

Prove that for any positive integer $n$, the number of odd integers among the binomial coefficients $\binom nh \ ( 0 \leq h \leq n)$ is a power of 2.

2020 Jozsef Wildt International Math Competition, W28

For positive integers $j\le n$, prove that $$\sum_{k=j}^n\binom{2n}{2k}\binom kj=\frac{n\cdot4^{n-j}}j\binom{2n-j-1}{j-1}.$$ [i]Proposed by Ángel Plaza[/i]

1999 IMO Shortlist, 1

Let $n \geq 1$ be an integer. A [b]path[/b] from $(0,0)$ to $(n,n)$ in the $xy$ plane is a chain of consecutive unit moves either to the right (move denoted by $E$) or upwards (move denoted by $N$), all the moves being made inside the half-plane $x \geq y$. A [b]step[/b] in a path is the occurence of two consecutive moves of the form $EN$. Show that the number of paths from $(0,0)$ to $(n,n)$ that contain exactly $s$ steps $(n \geq s \geq 1)$ is \[\frac{1}{s} \binom{n-1}{s-1} \binom{n}{s-1}.\]

Russian TST 2020, P1

The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).

2014 USAJMO, 1

Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that \[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]

2015 Postal Coaching, Problem 2

Let $ n$ be a positive integer. Find the number of odd coefficients of the polynomial \[ u_n(x) \equal{} (x^2 \plus{} x \plus{} 1)^n. \]