Found problems: 167
PEN A Problems, 70
Suppose that $m=nq$, where $n$ and $q$ are positive integers. Prove that the sum of binomial coefficients \[\sum_{k=0}^{n-1}{ \gcd(n, k)q \choose \gcd(n, k)}\] is divisible by $m$.
2007 Thailand Mathematical Olympiad, 14
The sum $$\sum_{k=84}^{8000}{k \choose 84}{{8084 - k} \choose 84}$$
can be written as a binomial coefficient $a \choose b$ for integers $a, b$. Find a possible pair $(a, b)$
2000 Spain Mathematical Olympiad, 2
The figure shows a network of roads bounding $12$ blocks. Person $P$ goes from $A$ to $B,$ and person $Q$ goes from $B$ to $A,$ each going by a shortest path (along roads). The persons start simultaneously and go at the same constant speed. At each point with two possible directions to take, both have the same probability. Find the probability that the persons meet.
[asy]
import graph; size(150); real lsf = 0.5; pen dp = linewidth(0.7) + fontsize(10); defaultpen(dp); pen ds = black;
draw((0,3)--(4,3),linewidth(1.2pt)); draw((4,3)--(4,0),linewidth(1.2pt)); draw((4,0)--(0,0),linewidth(1.2pt)); draw((0,0)--(0,3),linewidth(1.2pt)); draw((1,3)--(1,0),linewidth(1.2pt)); draw((2,3)--(2,0),linewidth(1.2pt)); draw((3,3)--(3,0),linewidth(1.2pt)); draw((0,1)--(4,1),linewidth(1.2pt)); draw((4,2)--(0,2),linewidth(1.2pt));
dot((0,0),ds); label("$A$", (-0.3,-0.36),NE*lsf); dot((4,3),ds); label("$B$", (4.16,3.1),NE*lsf); clip((-4.3,-10.94)--(-4.3,6.3)--(16.18,6.3)--(16.18,-10.94)--cycle);
[/asy]
2015 Rioplatense Mathematical Olympiad, Level 3, 5
For a positive integer number $n$ we denote $d(n)$ as the greatest common divisor of the binomial coefficients $\dbinom{n+1}{n} , \dbinom{n+2}{n} ,..., \dbinom{2n}{n}$.
Find all possible values of $d(n)$
2001 VJIMC, Problem 2
Prove that for any prime $p\ge5$, the number
$$\sum_{0<k<\frac{2p}3}\binom pk$$is divisible by $p^2$.
2008 AMC 12/AHSME, 19
In the expansion of
\[ \left(1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{27}\right)\left(1 \plus{} x \plus{} x^2 \plus{} \cdots \plus{} x^{14}\right)^2,
\]what is the coefficient of $ x^{28}$?
$ \textbf{(A)}\ 195 \qquad \textbf{(B)}\ 196 \qquad \textbf{(C)}\ 224 \qquad \textbf{(D)}\ 378 \qquad \textbf{(E)}\ 405$
2014 Contests, 1
Let $a$, $b$, $c$ be real numbers greater than or equal to $1$. Prove that
\[ \min \left(\frac{10a^2-5a+1}{b^2-5b+10},\frac{10b^2-5b+1}{c^2-5c+10},\frac{10c^2-5c+1}{a^2-5a+10}\right )\leq abc. \]
2020 Azerbaijan IMO TST, 2
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
PEN S Problems, 4
If $x$ is a real number such that $x^2 -x$ is an integer, and for some $n \ge 3$, $x^n -x$ is also an integer, prove that $x$ is an integer.
1988 IMO Longlists, 3
Let $ n$ be a positive integer. Find the number of odd coefficients of the polynomial
\[ u_n(x) \equal{} (x^2 \plus{} x \plus{} 1)^n.
\]
2010 ISI B.Stat Entrance Exam, 8
Take $r$ such that $1\le r\le n$, and consider all subsets of $r$ elements of the set $\{1,2,\ldots,n\}$. Each subset has a smallest element. Let $F(n,r)$ be the arithmetic mean of these smallest elements. Prove that: \[ F(n,r)={n+1\over r+1}. \]
1985 IMO Shortlist, 3
For any polynomial $P(x)=a_0+a_1x+\ldots+a_kx^k$ with integer coefficients, the number of odd coefficients is denoted by $o(P)$. For $i-0,1,2,\ldots$ let $Q_i(x)=(1+x)^i$. Prove that if $i_1,i_2,\ldots,i_n$ are integers satisfying $0\le i_1<i_2<\ldots<i_n$, then: \[ o(Q_{i_{1}}+Q_{i_{2}}+\ldots+Q_{i_{n}})\ge o(Q_{i_{1}}). \]
2020 Taiwan TST Round 1, 1
The infinite sequence $a_0,a _1, a_2, \dots$ of (not necessarily distinct) integers has the following properties: $0\le a_i \le i$ for all integers $i\ge 0$, and \[\binom{k}{a_0} + \binom{k}{a_1} + \dots + \binom{k}{a_k} = 2^k\] for all integers $k\ge 0$. Prove that all integers $N\ge 0$ occur in the sequence (that is, for all $N\ge 0$, there exists $i\ge 0$ with $a_i=N$).
Kvant 2019, M2572
Let $k$ be a fixed positive integer. Prove that the sequence $\binom{2}{1},\binom{4}{2},\binom{8}{4},\ldots,
\binom{2^{n+1}}{2^n},\ldots$ is eventually constant modulo $2^k$.
[i]Proposed by V. Rastorguyev[/i]
2016 Germany National Olympiad (4th Round), 4
Find all positive integers $m,n$ with $m \leq 2n$ that solve the equation \[ m \cdot \binom{2n}{n} = \binom{m^2}{2}. \] [i](German MO 2016 - Problem 4)[/i]
2009 China Team Selection Test, 3
Let $ f(x)$ be a $ n \minus{}$degree polynomial all of whose coefficients are equal to $ \pm 1$, and having $ x \equal{} 1$ as its $ m$ multiple root. If $ m\ge 2^k (k\ge 2,k\in N)$, then $ n\ge 2^{k \plus{} 1} \minus{} 1.$
PEN Q Problems, 6
Prove that for a prime $p$, $x^{p-1}+x^{p-2}+ \cdots +x+1$ is irreducible in $\mathbb{Q}[x]$.